Polyethylene-Silica Nanocomposites with the Structure of Semi-Interpenetrating Networks

被引:5
|
作者
Trofimchuk, Elena S. [1 ]
Meshkov, Ivan B. [3 ]
Kandlina, Margarita N. [1 ]
Nikonorova, Nina, I [1 ]
Muzafarov, Aziz M. [3 ,4 ]
Malyshkina, Nna A. [2 ]
Moskvina, Marina A. [1 ]
Grabovenko, Fedor, I [1 ]
Volynskii, Aleksandr L. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Chem, 1-3 Lenin Hills, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Dept Phys, 1-2 Lenin Hills, Moscow 119991, Russia
[3] Russian Acad Sci, NS Enikolopov Inst Synthet Polymer Mat, 70 Profsoyuznaya St, Moscow 117393, Russia
[4] Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, 28 Vavilova St,V-334, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
crazing; phase separation; polyethylene-silica nanocomposites; proton conductivity; semi-interpenetrating networks; HIGH-DENSITY POLYETHYLENE; CRAZING MECHANISM; PHOSPHORIC-ACID; POLYMER; CONDUCTIVITY; COMPOSITES; EVOLUTION; MEMBRANES; GELS;
D O I
10.1002/mame.201900430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Organic-inorganic nanocomposites with the structure of interpenetrating or semi-interpenetrating networks are considered as advanced materials, since they have improved thermal and mechanical properties. An alternative approach to the preparation of such hybrid systems is proposed. It is based on the synthesis of silica from the precursor of hyperbranched polyethoxysiloxane by the hydrolytic condensation reaction in the volume of pores of a polymer matrix (bulk porosity is 40 vol%) stretched via the environmental crazing mechanism. Polyethylene-silica nanocomposites with the structure of semi-interpenetrating networks when the content of silica is not less than 20-25 wt% are obtained. These composites can undergo an additional phase separation at a temperature of 160 degrees C (above the melting point of polyethylene), which is accompanied by an increase in the size of the polymer phase with the formation of macrophases. At the same time, the environment (orthophosphoric acid), in which the composite is heated, fills the pores that have appeared. As a result, the content of the third component with the new functionality increases up to 50 wt%, which allowed us to impart proton-conducting properties to the composite material and preserve its shape stability.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] P and n dopable semi-interpenetrating polymer networks
    Lav, T. -X.
    Tran-Van, F.
    Bonnet, J. -P.
    Chevrot, C.
    Peralta, S.
    Teyssie, D.
    Grazulevicius, J. V.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2007, 11 (06) : 859 - 866
  • [22] Influence of reaction kinetics on the viscoelastic properties of semi-interpenetrating polymer networks containing modified silica
    Babkina, N.V.
    Alekseeva, T.T.
    Grishchuk, S.I.
    Lipatov, Y.S.
    Ukrainskij Khimicheskij Zhurnal, 2002, 68 (7-8): : 107 - 110
  • [23] THE TRANSPARENCY OF POLYURETHANE POLY(METHYL METHACRYLATE) INTERPENETRATING AND SEMI-INTERPENETRATING POLYMER NETWORKS
    JEHL, D
    WIDMAIER, JM
    MEYER, GC
    EUROPEAN POLYMER JOURNAL, 1983, 19 (07) : 597 - 600
  • [24] Bio-based semi-interpenetrating networks with nanoscale morphology and interconnected microporous structure
    Madbouly, Samy
    NANOFABRICATION, 2022, 7 : 154 - 164
  • [25] Effect of Filler Size on Properties of Linear Low Density Polyethylene-Silica Nanocomposites
    Moona, Girija
    Sharma, Rina
    Sindhu, Nidhi
    Ojha, V. N.
    JOURNAL OF POLYMER MATERIALS, 2015, 32 (03): : 247 - 258
  • [26] Erlotinib-loaded carboxymethyl temarind gum semi-interpenetrating nanocomposites
    Bera, Hriday
    Abbasi, Yasir Faraz
    Ping, Law Lee
    Marbaniang, Daphisha
    Mazumder, Bhaskar
    Kumar, Pramod
    Tambe, Prajakta
    Gajbhiye, Virendra
    Cun, Dongmei
    Yang, Mingshi
    CARBOHYDRATE POLYMERS, 2020, 230 (230)
  • [27] Rheological and swelling behavior of semi-interpenetrating networks of polyacrylamide and scleroglucan
    Aalaie, Jamal
    Rahmatpour, Ali
    Vasheghani-Farahani, Ebrahim
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2009, 20 (12) : 1102 - 1106
  • [28] Semi-interpenetrating polymer networks based on partially compatible components
    Brovko, O.O.
    Sergeeva, L.M.
    Karabanova, I.V.
    Gorbach, L.A.
    Ukrainskij Khimicheskij Zhurnal, 2003, 69 (11-12): : 106 - 109
  • [29] High Compliance Vascular Grafts Based on Semi-Interpenetrating Networks
    Dempsey, David K.
    Nezarati, Roya M.
    Mackey, Calvin E.
    Cosgriff-Hernandez, Elizabeth M.
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2014, 299 (12) : 1455 - 1464
  • [30] Hybrid materials based on sequential semi-interpenetrating polymer networks
    Alekseeva, Tatiana T.
    Lipatov, Yuri S.
    Babkina, Natali V.
    Yarovaya, Natali V.
    Sorochinskaya, Lyubov A.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2008, 483 : 191 - 204