Magnetic stabilization of the buoyant convection in the liquid-encapsulated Czochralski process

被引:24
作者
Walker, JS
Henry, D
BenHadid, H
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
[2] Univ Lyon 1, Ecole Cent Lyon, Lab Mecan Fluides & Acoust, UMR CNRS 5509, F-69131 Ecully, France
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
computer simulation; convection; magnetic fields; magnetic field assisted Czochralski methods; semiconducting III-V materials;
D O I
10.1016/S0022-0248(02)01487-2
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
This paper presents a linear stability analysis for the buoyant convection during the liquid-encapsulated Czochralski growth of compound semiconductor crystals with a steady, uniform, vertical magnetic field. Results are presented for two values of the Prandtl number, corresponding to indium-phosphide (InP) and gallium-arsenide (GaAs). Most of the results are for a melt depth equal to the crucible diameter, but some results are also presented for a smaller depth. For the cases considered here, the instability involves a transition from a steady axisymmetric flow to a steady nonaxisymmetric flow corresponding to the first Fourier mode in the azimuthal direction. For the weaker magnetic fields, the critical Rayleigh number is close to that for the Rayleigh-Benard instability in a vertical cylinder. For the stronger magnetic fields, the critical Rayleigh number for GaAs is higher than that for InP because convective heat transfer in the GaAs base flow reduces the vertical temperature gradient. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:108 / 116
页数:9
相关论文
共 32 条
[1]  
[Anonymous], 1990, MAGNETOHYDRODYNAMICS
[2]   OSCILLATORY CONVECTION IN LOW-ASPECT-RATIO CZOCHRALSKI MELTS [J].
ANSELMO, A ;
PRASAD, V ;
KOZIOL, J ;
GUPTA, KP .
JOURNAL OF CRYSTAL GROWTH, 1993, 134 (1-2) :116-139
[3]  
BenHadid H, 1997, J CRYST GROWTH, V180, P433, DOI 10.1016/S0022-0248(97)00291-1
[4]   Numerical study of convection in the horizontal Bridgman configuration under the action of a constant magnetic field .1. Two-dimensional flow [J].
BenHadid, H ;
Henry, D ;
Kaddeche, S .
JOURNAL OF FLUID MECHANICS, 1997, 333 :23-56
[5]   Numerical study of convection in the horizontal Bridgman configuration under the action of a constant magnetic field .2. Three-dimensional flow [J].
BenHadid, H ;
Henry, D .
JOURNAL OF FLUID MECHANICS, 1997, 333 :57-83
[6]   MLEK CRYSTAL-GROWTH OF (100)INDIUM PHOSPHIDE [J].
BLISS, DF ;
HILTON, RM ;
BACHOWSKI, S ;
ADAMSKI, JA .
JOURNAL OF ELECTRONIC MATERIALS, 1991, 20 (12) :967-971
[7]   MLEK CRYSTAL-GROWTH OF LARGE DIAMETER (100) INDIUM-PHOSPHIDE [J].
BLISS, DF ;
HILTON, RM ;
ADAMSKI, JA .
JOURNAL OF CRYSTAL GROWTH, 1993, 128 (1-4) :451-456
[8]   QUANTITATIVE-ANALYSIS OF THE EFFECTS OF VERTICAL MAGNETIC-FIELDS ON MICROSEGREGATION IN TE-DOPED LEC GAAS [J].
CARLSON, DJ ;
WITT, AF .
JOURNAL OF CRYSTAL GROWTH, 1992, 116 (3-4) :461-472
[9]   Buoyancy-driven convection with a uniform magnetic field. Part 2. Experimental investigation [J].
Davoust, L ;
Cowley, MD ;
Moreau, R ;
Bolcato, R .
JOURNAL OF FLUID MECHANICS, 1999, 400 :59-90
[10]   Convective temperature fluctuations in liquid gallium in dependence on static and rotating magnetic fields [J].
Dold, P ;
Benz, KW .
CRYSTAL RESEARCH AND TECHNOLOGY, 1995, 30 (08) :1135-1145