ON THE OPTIMAL MAP IN THE 2-DIMENSIONAL RANDOM MATCHING PROBLEM

被引:16
作者
Ambrosio, Luigi [1 ]
Glaudo, Federico [2 ]
Trevisan, Dario [3 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] ETH, Ramistr 101, CH-8092 Zurich, Switzerland
[3] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
基金
欧洲研究理事会;
关键词
Minimum matching; random matching; optimal transport; Hamilton-Jacobi; stability; POLAR FACTORIZATION; COST;
D O I
10.3934/dcds.2019304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, on a 2-dimensional compact manifold, the optimal transport map in the semi-discrete random matching problem is wellapproximated in the L-2-norm by identity plus the gradient of the solution to the Poisson problem - Delta f(n,t) = mu(n,t) - 1, where mu(n,t) is an appropriate regularization of the empirical measure associated to the random points. This shows that the ansatz of [8] is strong enough to capture the behavior of the optimal map in addition to the value of the optimal matching cost. As part of our strategy, we prove a new stability result for the optimal transport map on a compact manifold.
引用
收藏
页码:7291 / 7308
页数:18
相关论文
共 33 条
[1]   ON OPTIMAL MATCHINGS [J].
AJTAI, M ;
KOMLOS, J ;
TUSNADY, G .
COMBINATORICA, 1984, 4 (04) :259-264
[2]  
Ambrosio L., ARXIV1810 07002
[3]   A PDE approach to a 2-dimensional matching problem [J].
Ambrosio, Luigi ;
Stra, Federico ;
Trevisan, Dario .
PROBABILITY THEORY AND RELATED FIELDS, 2019, 173 (1-2) :433-477
[4]  
[Anonymous], 2015, PROGR NONLINEAR DIFF
[5]  
Bardi M., 1997, OPTIMAL CONTROL VISC
[6]  
Benton S, 1977, HAMILTON JACOBI EQUA
[7]  
Berman R. J., ARXIV180300785
[9]   Scaling hypothesis for the Euclidean bipartite matching problem [J].
Caracciolo, S. ;
Lucibello, C. ;
Parisi, G. ;
Sicuro, G. .
PHYSICAL REVIEW E, 2014, 90 (01)
[10]  
Chavel I., 1984, PURE APPL MATH, V115