ON THE OPTIMAL MAP IN THE 2-DIMENSIONAL RANDOM MATCHING PROBLEM

被引:12
作者
Ambrosio, Luigi [1 ]
Glaudo, Federico [2 ]
Trevisan, Dario [3 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] ETH, Ramistr 101, CH-8092 Zurich, Switzerland
[3] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
基金
欧洲研究理事会;
关键词
Minimum matching; random matching; optimal transport; Hamilton-Jacobi; stability; POLAR FACTORIZATION; COST;
D O I
10.3934/dcds.2019304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, on a 2-dimensional compact manifold, the optimal transport map in the semi-discrete random matching problem is wellapproximated in the L-2-norm by identity plus the gradient of the solution to the Poisson problem - Delta f(n,t) = mu(n,t) - 1, where mu(n,t) is an appropriate regularization of the empirical measure associated to the random points. This shows that the ansatz of [8] is strong enough to capture the behavior of the optimal map in addition to the value of the optimal matching cost. As part of our strategy, we prove a new stability result for the optimal transport map on a compact manifold.
引用
收藏
页码:7291 / 7308
页数:18
相关论文
共 33 条
  • [1] ON OPTIMAL MATCHINGS
    AJTAI, M
    KOMLOS, J
    TUSNADY, G
    [J]. COMBINATORICA, 1984, 4 (04) : 259 - 264
  • [2] Ambrosio L., ARXIV1810 07002
  • [3] A PDE approach to a 2-dimensional matching problem
    Ambrosio, Luigi
    Stra, Federico
    Trevisan, Dario
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2019, 173 (1-2) : 433 - 477
  • [4] [Anonymous], 2015, PROGR NONLINEAR DIFF
  • [5] Bardi M., 1997, OPTIMAL CONTROL VISC
  • [6] Benton S, 1977, HAMILTON JACOBI EQUA
  • [7] Berman R. J., ARXIV180300785
  • [9] Scaling hypothesis for the Euclidean bipartite matching problem
    Caracciolo, S.
    Lucibello, C.
    Parisi, G.
    Sicuro, G.
    [J]. PHYSICAL REVIEW E, 2014, 90 (01)
  • [10] Chavel I., 1984, PURE APPL MATH, V115