Dispersion properties of electron acoustic waves in degenerate and non-degenerate quantum plasmas

被引:8
作者
Fahad, S. [1 ]
Ahmad, Mushtaq [1 ]
Jan, Qasim [2 ]
Akram, F. [3 ]
机构
[1] Int Islamic Univ, Dept Phys, FBAS, Islamabad, Pakistan
[2] Abdul Wali Khan Univ, Dept Phys, FPNS, Mardan 23200, Pakistan
[3] Changwon Natl Univ, Sch Mat Sci & Engn, Gyeongnam, South Korea
关键词
degenerate and nondegenerate plasma; electron acoustic waves; Landau damping; quantum plasma; quantum recoil; SOLITARY WAVES; MAGNETOTAIL; PHYSICS; NOISE;
D O I
10.1002/ctpp.201900041
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The longitudinal response functions are used to generalize the dispersion properties of electron acoustic waves (EAWs) in the presence of quantum recoil, for isotropic, non-relativistic, degenerate/non-degenerate plasmas. In order to study the EAWs, the constituents of non-degenerate (thermal) plasma are considered to be of two groups of electrons having different number density and temperature, namely the cold electrons and the hot electrons. Similarly in degenerate (Fermi) plasma the two population of electrons are considered to be the thinly populated and the thickly populated electrons. The sparsely populated electrons are termed as cold electrons while the densely populated ones are termed as hot electrons. The ions are stationary which form the neutralizing background. The absorption coefficients for Landau damping with the inclusion of the quantum recoil in both plasmas are calculated and discussed. The results are discussed in the context of laser-produced plasma.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Electron acoustic waves in pure ion plasmas [J].
Anderegg, F. ;
Driscoll, C. F. ;
Dubin, D. H. E. ;
O'Neil, T. M. ;
Valentini, F. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[2]   Ultrashort-pulse child-langmuir law in the quantum and relativistic regimes [J].
Ang, L. K. ;
Zhang, P. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[3]   BROAD-BAND ELECTROSTATIC NOISE AND FIELD-ALIGNED CURRENTS IN JUPITERS MIDDLE MAGNETOSPHERE [J].
BARBOSA, DD ;
SCARF, FL ;
KURTH, WS ;
GURNETT, DA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA10) :8357-8369
[4]   Comparisons of Polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone [J].
Cattell, CA ;
Dombeck, J ;
Wygant, JR ;
Hudson, MK ;
Mozer, FS ;
Temerin, MA ;
Peterson, WK ;
Kletzing, CA ;
Russell, CT ;
Pfaff, RF .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (03) :425-428
[5]   Electron-acoustic solitary waves in the presence of a suprathermal electron component [J].
Danehkar, Ashkbiz ;
Saini, Nareshpal Singh ;
Hellberg, Manfred A. ;
Kourakis, Ioannis .
PHYSICS OF PLASMAS, 2011, 18 (07)
[6]   Effect of higher-order nonlinearity to nonlinear electron-acoustic solitary waves in an unmagnetized collisionless plasma [J].
El-Shewy, EK .
CHAOS SOLITONS & FRACTALS, 2005, 26 (04) :1073-1079
[7]   Bound states near a moving charge in a quantum plasma [J].
Else, D. ;
Kompaneets, R. ;
Vladimirov, S. V. .
EPL, 2011, 94 (03)
[8]   THE ELECTRON-ACOUSTIC MODE [J].
GARY, SP ;
TOKAR, RL .
PHYSICS OF FLUIDS, 1985, 28 (08) :2439-2441
[9]   Observations of plasmons in warm dense matter [J].
Glenzer, S. H. ;
Landen, O. L. ;
Neumayer, P. ;
Lee, R. W. ;
Widmann, K. ;
Pollaine, S. W. ;
Wallace, R. J. ;
Gregori, G. ;
Hoell, A. ;
Bornath, T. ;
Thiele, R. ;
Schwarz, V. ;
Kraeft, W. -D. ;
Redmer, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[10]   An Introduction to Quantum Plasmas [J].
Haas, Fernando .
BRAZILIAN JOURNAL OF PHYSICS, 2011, 41 (4-6) :349-363