共 50 条
Long-Range Supercoiling-Mediated RNA Polymerase Cooperation in Transcription
被引:6
|作者:
Klindziuk, Alena
[1
]
Kolomeisky, Anatoly B.
[2
,3
,4
]
机构:
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, Ctr Theoret Biol Phys, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[4] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
来源:
关键词:
GENE-EXPRESSION;
SINGLE-MOLECULE;
NOISE;
INITIATION;
DYNAMICS;
MODEL;
D O I:
10.1021/acs.jpcb.1c01859
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
It is widely believed that DNA supercoiling plays an important role in the regulation of transcriptional dynamics. Recent studies show that it could affect transcription not only through the buildup and relaxation of torsional strain on DNA strands but also via effective long-range supercoiling-mediated interactions between RNA polymerase (RNAP) molecules. Here, we present a theoretical study that quantitatively analyzes the effect of long-range RNAP cooperation in transcription dynamics. Our minimal chemical-kinetic model assumes that one or two RNAP molecules can simultaneously participate in the transcription, and it takes into account their binding to and dissociation from DNA. It also explicitly accounts for competition between the supercoiling buildup that reduces the RNA elongation speed and gyrase binding that rescues the RNA synthesis. The full analytical solution of the model accompanied by Monte Carlo computer simulations predicts that the system should exhibit transcriptional bursting dynamics, in agreement with experimental observations. The analysis also revealed that when there are two polymerases participating in the elongation rather than one, the transcription process becomes much more efficient since the level of stochastic noise decreases while more RNA transcripts are produced. Our theoretical investigation clarifies molecular aspects of the supercoiling-mediated RNAP cooperativity during transcription.
引用
收藏
页码:4692 / 4700
页数:9
相关论文