Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer Type Operators

被引:18
作者
Mursaleen, M. [1 ]
Rahman, Shagufta [1 ]
Ansari, Khursheed J. [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
Durrmeyer operators; Jakimovski-Leviatan operators; Simultaneous approximation; Statistical approximation; Modulus of continuity; STATISTICAL APPROXIMATION;
D O I
10.2298/FIL1906517M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.
引用
收藏
页码:1517 / 1530
页数:14
相关论文
共 50 条
[31]   Unveiling the Potential of Sheffer Polynomials: Exploring Approximation Features with Jakimovski-Leviatan Operators [J].
Zayed, Mohra ;
Wani, Shahid Ahmad ;
Bhat, Mohammad Younus .
MATHEMATICS, 2023, 11 (16)
[32]   APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS [J].
Agrawal, P. N. ;
Kumar, Ajay .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02) :1522-1536
[33]   Approximation properties for the genuine modified Bernstein-Durrmeyer-Stancu operators [J].
Qing-bo Cai ;
Ülkü Dinlemez Kantar ;
Bayram Çekim .
Applied Mathematics-A Journal of Chinese Universities, 2020, 35 :468-478
[34]   CONVERGENCE ON SEQUENCES OF SZASZ-JAKIMOVSKI-LEVIATAN TYPE OPERATORS AND RELATED RESULTS [J].
Nasiruzzaman, Mohammad .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (02) :218-230
[35]   Approximation of functions by a class of Durrmeyer-Stancu type operators which includes Euler's beta function [J].
Alotaibi, Abdullah ;
Ozger, Faruk ;
Mohiuddine, S. A. ;
Alghamdi, Mohammed A. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[36]   Simultaneous Approximation for Szsz-Mirakian-Stancu-Durrmeyer Operators [J].
Vijay Gupta ;
Naokant Deo ;
Xiaoming Zeng .
Analysis in Theory and Applications, 2013, 29 (01) :86-96
[37]   Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators [J].
Vishnu Narayan Mishra ;
Kejal Khatri ;
Lakshmi Narayan Mishra .
Journal of Inequalities and Applications, 2013 (1)
[38]   Approximation properties for the genuine modified Bernstein-Durrmeyer-Stancu operators [J].
Cai Qing-bo ;
Kantar, Ulku Dinlemez ;
Cekim, Bayram .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2020, 35 (04) :468-478
[39]   Rate of approximation for Szász-Mirakyan-Stancu-Durrmeyer operators [J].
N. K. Govil ;
Vijay Gupta .
Lobachevskii Journal of Mathematics, 2012, 33 (3) :249-254
[40]   Simultaneous approximation by Szász-Mirakjan-Durrmeyer-type operators [J].
Mishra V.N. ;
Gandhi R.B. ;
Nasaireh F. .
Bollettino dell'Unione Matematica Italiana, 2016, 8 (4) :297-305