Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer Type Operators

被引:19
作者
Mursaleen, M. [1 ]
Rahman, Shagufta [1 ]
Ansari, Khursheed J. [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
Durrmeyer operators; Jakimovski-Leviatan operators; Simultaneous approximation; Statistical approximation; Modulus of continuity; STATISTICAL APPROXIMATION;
D O I
10.2298/FIL1906517M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.
引用
收藏
页码:1517 / 1530
页数:14
相关论文
共 50 条
[21]   Certain approximation properties of Brenke polynomials using Jakimovski-Leviatan operators [J].
Wani, Shahid Ahmad ;
Mursaleen, M. ;
Nisar, Kottakkaran Sooppy .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[22]   Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus [J].
Alotaibi, Abdullah ;
Mursaleen, M. .
AIMS MATHEMATICS, 2020, 5 (04) :3019-3034
[23]   Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials [J].
Mursaleen, M. ;
AL-Abeid, A. A. H. ;
Ansari, Khursheed J. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) :1251-1265
[24]   On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials [J].
Ayman-Mursaleen, Mohammad ;
Nasiruzzaman, Md. ;
Rao, Nadeem .
IRANIAN JOURNAL OF SCIENCE, 2025,
[25]   Approximation by Szasz-Stancu-Durrmeyer type Operators Using Charlier Polynomials [J].
Rao, N. ;
Wafi, A. .
AZERBAIJAN JOURNAL OF MATHEMATICS, 2018, 8 (02) :60-71
[26]   GBS OPERATORS OF DURRMEYER-STANCU TYPE [J].
Pop, Ovidiu T. ;
Barbosu, Dan .
MISKOLC MATHEMATICAL NOTES, 2008, 9 (01) :53-60
[27]   Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials [J].
M. Mursaleen ;
A. A. H. AL-Abeid ;
Khursheed J. Ansari .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 :1251-1265
[28]   QUANTITATIVE APPROXIMATION BY STANCU-DURRMEYER-CHOQUET-SIPOS OPERATORS [J].
Gal, Sorin G. .
MATHEMATICA SLOVACA, 2019, 69 (03) :625-638
[29]   Approximation of functions by a class of Durrmeyer–Stancu type operators which includes Euler’s beta function [J].
Abdullah Alotaibi ;
Faruk Özger ;
S. A. Mohiuddine ;
Mohammed A. Alghamdi .
Advances in Difference Equations, 2021
[30]   Approximation by generalized Stancu type integral operators involving Sheffer polynomials [J].
Mursaleen, M. ;
Rahman, Shagufta ;
Ansari, Khursheed J. .
CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (02) :215-228