Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer Type Operators

被引:18
|
作者
Mursaleen, M. [1 ]
Rahman, Shagufta [1 ]
Ansari, Khursheed J. [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
Durrmeyer operators; Jakimovski-Leviatan operators; Simultaneous approximation; Statistical approximation; Modulus of continuity; STATISTICAL APPROXIMATION;
D O I
10.2298/FIL1906517M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce Stancu type modification of Jakimovski-Leviatan-Durrmeyer operators. First, we estimate moments of these operators. Next, we study the problem of simultaneous approximation by these operators. An upper bound for the approximation to rth derivative of a function by these operators is established. Furthermore, we obtain A-statistical approximation properties of these operators with the help of universal korovkin type statistical approximation theorem.
引用
收藏
页码:1517 / 1530
页数:14
相关论文
共 50 条
  • [1] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [2] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024
  • [3] Approximation using Jakimovski–Leviatan operators of Durrmeyer type with 2D-Appell polynomials
    Manoj Kumar
    Nusrat Raza
    M. Mursaleen
    Journal of Inequalities and Applications, 2025 (1)
  • [4] STANCU VARIANT OF JAKIMOVSKI-LEVIATAN-DURRMEYER OPERATORS INVOLVING BRENKE TYPE POLYNOMIALS
    Agrawal, Purshottam Narain
    Singh, Sompal
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (01): : 1 - 19
  • [5] Approximation by Chlodowsky type Jakimovski-Leviatan operators
    Buyukyazici, Ibrahim
    Tanberkan, Hande
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 153 - 163
  • [6] Approximation by Modified Integral Type Jakimovski-Leviatan Operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    FILOMAT, 2016, 30 (01) : 29 - 39
  • [7] APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS
    Dalmanoglu, Ozge
    Serenbay, Sevilay Kirci
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2016, 65 (01): : 157 - 169
  • [8] Simultaneous approximation by Szasz-Mirakjan-Stancu-Durrmeyer type operators
    Mishra, Vishnu Narayan
    Gandhi, R. B.
    PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (01) : 118 - 127
  • [9] Simultaneous approximation by Szász–Mirakjan–Stancu–Durrmeyer type operators
    Vishnu Narayan Mishra
    R. B. Gandhi
    Periodica Mathematica Hungarica, 2017, 74 : 118 - 127
  • [10] Approximation by generalized Baskakov–Durrmeyer–Stancu type operators
    Kumar A.S.
    Acar T.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (3): : 411 - 424