An alternative enumeration of self-complementary graphs

被引:0
|
作者
Nakamoto, Atsuhiro [1 ]
Shirakura, Teruhiro [2 ]
Tazawa, Shinsei [3 ]
机构
[1] Yokohama Natl Univ, Dept Math, Fac Educ & Human Sci, Yokohama, Kanagawa 2408502, Japan
[2] Kobe Univ, Dept Math & Informat, Fac Human Dev, Kobe, Hyogo 6578501, Japan
[3] Kinki Univ, Dept Math, Fac Sci & Engn, Higashiosaka, Osaka 5778502, Japan
关键词
Self-complementary graph; Burnside's Lemma; automorphism group;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let e(n), o(n), sc(n) be the number of unlabelled graphs of order n with an even number of edges, the number of those with an odd number of edges, and the number of unlabelled self-complementary graphs of order, n, respectively. In 2001, Gordon F. Royle conjectured the equality sc(n) = e(n) - o(n). This paper shows that this conjecture is true.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 50 条
  • [31] Almost self-complementary circulant graphs
    Dobson, E
    Sajna, M
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 23 - 44
  • [32] Characterisation of self-complementary chordal graphs
    Sridharan, MR
    Balaji, K
    DISCRETE MATHEMATICS, 1998, 188 (1-3) : 279 - 283
  • [33] Hadwiger Numbers of Self-complementary Graphs
    Pavelescu, Andrei
    Pavelescu, Elena
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 865 - 876
  • [34] On cospectral self-complementary chordal graphs
    Sridharan, MR
    Balaji, K
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1999, 22 (1-2): : 19 - 23
  • [35] More on almost self-complementary graphs
    Francetic, Nevena
    Sajna, Mateja
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3106 - 3112
  • [36] On Prime Labeled Self-Complementary Graphs
    Michael, A. A. George
    Youssef, M. Z.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2014, 17 (03): : 239 - 256
  • [37] All self-complementary symmetric graphs
    Peisert, W
    JOURNAL OF ALGEBRA, 2001, 240 (01) : 209 - 229
  • [38] Coloring edges of self-complementary graphs
    Instytut Matematyki, Akademia Górniczo-Hutnicza, al. Mickiewicza 30, 30-059 Kraków, Poland
    Discrete Appl Math, 1-3 (279-284):
  • [39] ON SELF-COMPLEMENTARY STRONGLY REGULAR GRAPHS
    MATHON, R
    DISCRETE MATHEMATICS, 1988, 69 (03) : 263 - 281
  • [40] SELF-COMPLEMENTARY AND SELF-CONVERSE ORIENTED GRAPHS
    SRIDHARA.MR
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1970, 73 (05): : 441 - &