Drift modeling of electrically controlled nanoscale metal-oxide gas sensors

被引:7
|
作者
Velasco-Velez, J. J. [1 ]
Chaiyboun, A. [1 ]
Wilbertz, C. [2 ]
Scheinert, S. [3 ]
Doll, T. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Dept Microstruct Phys, D-55128 Mainz, Germany
[2] Micronas GmbH, D-79108 Freiburg, Germany
[3] Tech Univ Ilmenau, Dept Solid State Elect, D-98693 Ilmenau, Germany
关键词
drift diffusion; field effect; Fokker-Planck equation; gas sensor; oxygen vacancies; Poisson equation; tin oxide;
D O I
10.1109/LED.2008.2000605
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gas sensors with small dimensions offer the advantage of electrical sensitivity modulation. However, their actual use is hindered by drift effects that exceed those of usual metal-oxide sensors. We analyzed possible causes and found the best agreement of experimental data with the model of internal dopant fluctuations. The dopants are oxygen vacancies exhibiting high drift-diffusion coefficients under the impact of electrical fields. Thus, the width parameters of space charge regions, which again control the sensor current, are undergoing slow changes. Moreover, the dopant distributions cause internal electrical fields that yield drift even after voltage switch-off. This behavior has been proven by simulations based on the literature values, using a converging combination of the classical electron drift-diffusion and Poisson equations with the Fokker-Planck solution for the dopants, which is of general relevance to other nonperfect semiconductor devices.
引用
收藏
页码:677 / 680
页数:4
相关论文
共 50 条
  • [1] NANOCRYSTALLINE METAL-OXIDE GAS SENSORS
    CHADWICK, AV
    RUSSELL, NV
    WHITHAM, AR
    WILSON, A
    SENSORS AND ACTUATORS B-CHEMICAL, 1994, 18 (1-3) : 99 - 102
  • [2] METAL-OXIDE BASED GAS SENSORS
    LOGOTHETIS, EM
    JOURNAL OF METALS, 1985, 37 (11): : A39 - A39
  • [3] Brief Modeling Equation for Metal-Oxide; TGS Type Gas Sensors
    Moshayedi, Ata Jahangir
    Kazemi, Ensieh
    Tabatabaei, Mohammad
    Liao, Liefa
    FILOMAT, 2020, 34 (15) : 4997 - 5008
  • [4] Metal oxide gas sensors on the nanoscale
    Plecenik, A.
    Haidry, A. A.
    Plecenik, T.
    Durina, P.
    Truchly, M.
    Mosko, M.
    Grancic, B.
    Gregor, M.
    Roch, T.
    Satrapinskyy, L.
    Moskova, A.
    Mikula, M.
    Kus, P.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VI, 2014, 9083
  • [5] GAS SENSORS ON THE BASIS OF METAL-OXIDE SEMICONDUCTORS
    HUBNER, HP
    OBERMEIER, E
    TECHNISCHES MESSEN, 1985, 52 (02): : 59 - 66
  • [6] Measurement System for Metal-Oxide Gas Sensors
    Araki, Hideo
    Omatu, Sigeru
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 17TH '12), 2012, : 109 - 112
  • [7] METAL-OXIDE BASED TOXIC GAS SENSORS
    Lee, Duk Dong
    Choi, Nak Jin
    ADVANCES IN ELECTRONIC CERAMIC MATERIALS, 2005, 26 (05): : 25 - 36
  • [8] Measurement system for metal-oxide gas sensors
    Araki, Hideo
    Omatu, Sigeru
    ARTIFICIAL LIFE AND ROBOTICS, 2013, 17 (3-4) : 357 - 361
  • [9] A COMPARISON OF METAL-OXIDE SEMICONDUCTOR AND CATALYTIC GAS SENSORS
    GENTRY, SJ
    JONES, TA
    SENSORS AND ACTUATORS, 1983, 4 (04): : 581 - 586
  • [10] Resistive gas sensors based on metal-oxide nanowires
    Mirzaei, Ali
    Lee, Jae-Hyoung
    Majhi, Sanjit Manohar
    Weber, Matthieu
    Bechelany, Mikhael
    Kim, Hyoun Woo
    Kim, Sang Sub
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (24)