Numerical investigation on turbulent flow, heat transfer, and entropy generation of water-based magnetic nanofluid flow in a tube with hemisphere porous under a uniform magnetic field

被引:22
|
作者
Soleymani, Peyman [1 ]
Ma, Yuan [2 ]
Saffarifard, Ehsan [1 ]
Mohebbi, Rasul [3 ]
Babaie, Meisam [4 ]
Karimi, Nader [5 ]
Saedodin, Seyfolah [1 ]
机构
[1] Semnan Univ, Fac Mech Engn, Semnan, Iran
[2] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong, Peoples R China
[3] Damghan Univ, Sch Engn, POB 3671641167, Damghan, Iran
[4] Univ Leeds, Sch Mech Engn, Leeds LS2 9JT, W Yorkshire, England
[5] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
关键词
Ferro-nanofluid; Convection; Entropy generation; Porosity; Magneto hydrodynamics; SINGLE-PHASE; THERMAL-CONDUCTIVITY; TRANSFER ENHANCEMENT; FLUID-FLOW; CONVECTION; MEDIA; PIPE; FRICTION; IMPACT; SINK;
D O I
10.1016/j.icheatmasstransfer.2022.106308
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper numerically investigates the forced convection and entropy generation of Fe3O4 water nanofluid inside a cylindrical tube with porous hemisphere media. The flow regime is turbulent under a uniform magnetic field and constant heat flux, and to solve the equations, the finite volume method is applied. The combination of nanofluid, magnetic field and porous hemisphere media on the flow and heat transfer in a tube is the main novelty. The effects of different parameters such as Reynolds number (10,000 to 25,000), porosity (epsilon = 20%, 40%, and 80%.), the solid volume fraction of nanofluid (0.5 vol%, 1 vol%, and 2.5 vol%), friction factor and entropy generation of Ferro-nanofluid in the tube are investigated. The Nusselt number, entropy generation, and friction factor have been discussed and analyzed detailly. It is found that as the Reynolds number enhances, the effect of inertial forces becomes more dominant. Furthermore, by increasing the porosity to 0.8, the Nusselt number decreases to a minimum value. Heat transfer enhancement by increasing Hartmann's number is less effective than adding nanoparticles. A more significant Hartmann number and larger nanoparticle volume fraction lead to more extensive performance evaluation criteria. It is also found that adding a magnetic field increases the friction factor. Adding nanoparticles to the pure water decreases entropy generation by heat transfer per unit volume.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Mixed convective flow of water-based nanofluid and melting heat transfer in a partially porous annulus
    De Souze, Stephon
    Job, Victor M.
    Narayana, Mahesha
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 54
  • [42] Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings
    M. E. Nakhchi
    J. A. Esfahani
    Journal of Thermal Analysis and Calorimetry, 2019, 138 : 1423 - 1436
  • [43] Water-based ferrofluid flow and heat transfer over a stretchable rotating disk under the influence of an alternating magnetic field
    Bhandari, Anupam
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (12) : 2201 - 2214
  • [44] Numerical investigation of entropy generation of turbulent flow in a novel outward corrugated tube
    Wang, Wei
    Zhang, Yaning
    Liu, Jian
    Li, Bingxi
    Sunden, Bengt
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 836 - 847
  • [45] Numerical Investigation of the Nanoparticle Volume Fraction Effect on the Flow, Heat Transfer, and Entropy Generation of the Fe3O4 Ferrofluid under a Non-uniform Magnetic Field
    Hosseinzadeh, Fazel
    Sarhaddi, Faramarz
    Mohebbi-Kalhori, Davod
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2016, 62 (09): : 521 - 533
  • [46] HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO2-WATER NANOFLUID
    Hussein, Adnan M.
    Abu Bakar, Rosli
    Kadirgama, Kumaran
    Sharma, Karada Viswanatha
    THERMAL SCIENCE, 2016, 20 (01): : 89 - 97
  • [47] Heat Transfer and Pressure Drop Analysis of a Confined Nanofluid Jet Flow Under a Non-uniform Magnetic Field
    Fersadou, B.
    Nessab, W.
    Kahalerras, H.
    Mouaici, K.
    Djeridi, A.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [48] Entropy and radiative heat transfer analysis in water-based nanofluid flow with Catteneo-Christov heat flux
    Sharma, K.
    Jindal, R.
    Goyal, V.
    Vijay, N.
    Duraihem, Faisal Z.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2025, 36 (06):
  • [49] Heat transfer characteristics of nanofluid under the action of magnetic field based on molecular dynamics and flow states
    Zhang, Xilong
    Li, Junhao
    Zhang, Yongliang
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (04) : 491 - 515
  • [50] Nanofluid Flow in a Semi-porous Channel in the Presence of Uniform Magnetic Field
    Sheikholeslami, M.
    Ganji, D. D.
    Rokni, H. B.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2013, 26 (06): : 653 - 662