Efficient Factorisation-based Gaussian Process Approaches for Online Tracking

被引:0
作者
Lyu, Chenyi [1 ]
Liu, Xingchi [1 ]
Mihaylova, Lyudmila [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
来源
2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022) | 2022年
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Gaussian process; sensor networks; uncertainty quantification; factorisation; covariance matrix; hierarchical off-diagonal matrix; low-rank approximation; Cholesky factorisation; online tracking;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Target tracking often relies on complex models with non-stationary parameters. Gaussian process (GP) is a model-free method that can achieve accurate performance. However, the inverse of the covariance matrix poses scalability challenges. Since the covariance matrix is typically dense, direct inversion and determinant evaluation methods suffer from cubic complexity to data size. This bottleneck limits the GP for long-term tracking or high-speed tracking. We present an efficient factorisation-based GP approach without any additional hyperparameters. The proposed approach reduces the computational complexity of the Cholesky decomposition by hierarchically factorising the covariance matrix into off-diagonal low-rank parts. Meanwhile, the resulting low-rank approximated Cholesky factor can also reduce the computation complexity of the inverse and the determinant operations. Numerical results based on offline and online tracking problems demonstrate the effectiveness of the proposed approach.
引用
收藏
页数:8
相关论文
共 24 条
[1]   Fast Direct Methods for Gaussian Processes [J].
Ambikasaran, Sivaram ;
Foreman-Mackey, Daniel ;
Greengard, Leslie ;
Hogg, David W. ;
O'Neil, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :252-265
[2]  
Ambikasaran Sivaram., 2013, Fast algorithms for dense numerical linear algebra and applications
[3]   A fast block low-rank dense solver with applications to finite-element matrices [J].
Aminfar, AmirHossein ;
Ambikasaran, Sivaram ;
Darve, Eric .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 304 :170-188
[4]   SINGULAR VALUE DECOMPOSITION (SVD) IMAGE-CODING [J].
ANDREWS, HC ;
PATTERSON, CL .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1976, 24 (04) :425-432
[5]   Matrices with Hierarchical Low-Rank Structures [J].
Ballani, Jonas ;
Kressner, Daniel .
EXPLOITING HIDDEN STRUCTURE IN MATRIX COMPUTATIONS: ALGORITHMS AND APPLICATIONS, 2016, 2173 :161-209
[6]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[7]  
Borm Steffen., 2003, HIERARCHICAL MATRICE
[8]   RANK REVEALING QR FACTORIZATIONS [J].
CHAN, TF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 88-9 :67-82
[9]  
Dereniowski D, 2004, LECT NOTES COMPUT SC, V3019, P985
[10]   Chebyshev interpolation for nonlinear eigenvalue problems [J].
Effenberger, Cedric ;
Kressner, Daniel .
BIT NUMERICAL MATHEMATICS, 2012, 52 (04) :933-951