On recent results in the modelling of neoclassical-tearing-mode stabilization via electron cyclotron current drive and their impact on the design of the upper EC launcher for ITER

被引:47
作者
Poli, E. [1 ]
Angioni, C. [1 ]
Casson, F. J. [1 ]
Farina, D. [2 ]
Figini, L. [2 ]
Goodman, T. P. [3 ]
Maj, O. [1 ]
Sauter, O. [3 ]
Weber, H. [1 ]
Zohm, H. [1 ]
Saibene, G. [4 ]
Henderson, M. A. [5 ]
机构
[1] EURATOM, Max Planck Inst Plasmaphys, D-14476 Garching, Germany
[2] Ist Fis Plasma CNR, Milan, Italy
[3] CRPP EPFL, Ctr Rech Phys Plasmas, Lausanne, Switzerland
[4] Fus Energy, Barcelona, Spain
[5] ITER Org, St Paul Les Durance, France
基金
英国工程与自然科学研究理事会;
关键词
electron cyclotron waves; neoclassical tearing modes; ITER; NONLINEAR DYNAMICS; MAGNETIC ISLANDS; WAVES; INSTABILITIES; RESISTIVITY;
D O I
10.1088/0029-5515/55/1/013023
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electron cyclotron wave beams injected from a launcher placed in the upper part of the vessel will be used in ITER to control MHD instabilities, in particular neoclassical tearing modes (NTMs). Simplified NTM stabilization criteria have been used in the past to guide the optimization of the launcher. Their derivation is reviewed in this paper and their range of applicability clarified. Moreover, possible effects leading to a deterioration of the predicted performance are discussed. Particularly critical in this context is the broadening of the electron-cyclotron (EC) deposition profiles. It is argued that the most detrimental effect for ITER is likely to be the scattering of the EC beams from density fluctuations due to plasma turbulence, resulting in a beam broadening by about a factor of two. The combined impact of these effects with that of beam misalignment (with respect to the targeted surface) is investigated by solving the Rutherford equation in a form that retains the most relevant terms. The perspectives for NTM stabilization in the Q = 10 ITER scenario are discussed.
引用
收藏
页数:12
相关论文
共 54 条
[21]   Requirements for alignment of electron cyclotron current drive for neoclassical tearing mode stabilization in ITER [J].
La Haye, R. J. ;
Ferron, J. R. ;
Humphreys, D. A. ;
Luce, T. C. ;
Petty, C. C. ;
Prater, R. ;
Strait, E. J. ;
Welander, A. S. .
NUCLEAR FUSION, 2008, 48 (05)
[22]   Effects of aberration on paraxial wave beams: beam tracing versus quasi-optical solutions [J].
Maj, O. ;
Balakin, A. A. ;
Poli, E. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (08)
[23]   Validation of the paraxial beam-tracing method in critical cases [J].
Maj, Omar ;
Pereverzev, Grigory V. ;
Poli, Emanuele .
PHYSICS OF PLASMAS, 2009, 16 (06)
[24]   Electron cyclotron current drive in low collisionality limit: On parallel momentum conservation [J].
Marushchenko, N. B. ;
Beidler, C. D. ;
Kasilov, S. V. ;
Kernbichler, W. ;
Maassberg, H. ;
Prater, R. ;
Harvey, R. W. .
PHYSICS OF PLASMAS, 2011, 18 (03)
[25]   electron cyclotron current drive calculated for ITER conditions using different models (vol 48, 054002, 2008) [J].
Marushchenko, N. B. ;
Maassberg, H. ;
Turkin, Yu. .
NUCLEAR FUSION, 2009, 49 (12)
[26]   Electron cyclotron current drive calculated for ITER conditions using different models [J].
Marushchenko, N. B. ;
Maassberg, H. ;
Turkin, Yu. .
NUCLEAR FUSION, 2008, 48 (05)
[27]   WEYL REPRESENTATION FOR ELECTROMAGNETIC-WAVES - THE WAVE KINETIC-EQUATION [J].
MCDONALD, SW ;
KAUFMAN, AN .
PHYSICAL REVIEW A, 1985, 32 (03) :1708-1713
[28]   Guidelines for Internal Optics Optimization of the ITER EC H&CD Upper Launcher [J].
Moro, A. ;
Bruschi, A. ;
Figini, L. ;
Chavan, R. ;
Farina, D. ;
Goodman, T. P. ;
Krause, A. ;
Henderson, M. A. ;
Landis, J. D. ;
Platania, P. ;
Saibene, G. ;
Galan, F. Sanchez ;
Sozzi, C. ;
Toussaint, M. .
RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 :550-553
[29]   Overview of the ITER EC H&CD system and its capabilities [J].
Omori, T. ;
Henderson, M. A. ;
Albajar, F. ;
Alberti, S. ;
Baruah, U. ;
Bigelow, T. S. ;
Beckett, B. ;
Bertizzolo, R. ;
Bonicelli, T. ;
Bruschi, A. ;
Caughman, J. B. ;
Chavan, R. ;
Cirant, S. ;
Collazos, A. ;
Cox, D. ;
Darbos, C. ;
de Baar, M. R. ;
Denisov, G. ;
Farina, D. ;
Gandini, F. ;
Gassmann, T. ;
Goodman, T. P. ;
Heidinger, R. ;
Hogge, J. P. ;
Illy, S. ;
Jean, O. ;
Jin, J. ;
Kajiwara, K. ;
Kasparek, W. ;
Kasugai, A. ;
Kern, S. ;
Kobayashi, N. ;
Kumric, H. ;
Landis, J. D. ;
Moro, A. ;
Nazare, C. ;
Oda, Y. ;
Pagonakis, I. ;
Piosczyk, B. ;
Platania, P. ;
Plaum, B. ;
Poli, E. ;
Porte, L. ;
Purohit, D. ;
Ramponi, G. ;
Rao, S. L. ;
Rasmussen, D. A. ;
Ronden, D. M. S. ;
Rzesnicki, T. ;
Saibene, G. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) :951-954
[30]   Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes [J].
Parail, V. ;
Albanese, R. ;
Ambrosino, R. ;
Artaud, J. -F. ;
Besseghir, K. ;
Cavinato, M. ;
Corrigan, G. ;
Garcia, J. ;
Garzotti, L. ;
Gribov, Y. ;
Imbeaux, F. ;
Koechl, F. ;
Labate, C. V. ;
Lister, J. ;
Litaudon, X. ;
Loarte, A. ;
Maget, P. ;
Mattei, M. ;
McDonald, D. ;
Nardon, E. ;
Saibene, G. ;
Sartori, R. ;
Urban, J. .
NUCLEAR FUSION, 2013, 53 (11)