Exploring the synthesis conditions to control the morphology of gold-iron oxide heterostructures

被引:18
|
作者
Tancredi, Pablo [1 ]
da Costa, Luelc Souza [2 ,3 ]
Calderon, Sebastian [4 ]
Moscoso-Londono, Oscar [5 ,6 ]
Socolovsky, Leandro M. [7 ]
Ferreira, Paulo J. [4 ,8 ]
Muraca, Diego [5 ]
Zanchet, Daniela [2 ]
Knobel, Marcelo [5 ]
机构
[1] Univ Buenos Aires, CONICET, Fac Engn, Lab Amorphous Solids,INTECIN, CP C1063ACV, Buenos Aires, DF, Argentina
[2] Univ Campinas UNICAMP, Inst Chem, Dept Inorgan Chem, CP6154, BR-13083970 Campinas, SP, Brazil
[3] Brazilian Nanotechnol Natl Lab LNNano, Rua Giuseppe Maximo Scolfaro 10000, Campinas, SP, Brazil
[4] Int Iberian Nanotechnol Lab INL, Av Mestre Jose Veiga S-N, P-4715330 Braga, Portugal
[5] Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, BR-13083859 Campinas, SP, Brazil
[6] Autonomous Univ Manizales, Antigua Estn Ferrocarril, Manizales 170001, Colombia
[7] Univ Tecnol Nacl, CIT Santa Cruz CONICET, Fac Reg Santa Cruz, Av Inmigrantes 555, Rio Gallegos, Santa Cruz, Argentina
[8] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
基金
巴西圣保罗研究基金会;
关键词
nanoparticles; gold-iron oxide heterostructures; heterogeneous nucleation; epitaxial growth; HR-microscopy; SEEDED GROWTH; NANOPARTICLES; NANOCRYSTALS; AU; SIZE; HETERODIMERS; AGGREGATION; MN; FE; CO;
D O I
10.1007/s12274-019-2431-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gold-iron oxide nano-heterostructures with a clear and well-defined morphology were prepared via a seed-assisted method. The synthesis process and the events of heterogeneous nucleation during the decomposition of the iron precursor were carefully studied in order to understand the mechanism of the reaction and to tailor the architecture of the fabricated heterostructures. When employing Au seeds of 3 and 5 nm, nanoparticles with a dimer-like morphology were produced due to the occurrence of a single iron oxide nucleation event. Otherwise, multi-nucleation events could be favored by two mechanisms: (i) by the incorporation of a reducing agent and the slowing down of the heating protocol, leading to a core-shell system; (ii) by the increase of the Au seed size to 8 nm, leading to a flower-like system. Further increase of the Au seed size to 12 nm using similar synthesis conditions promotes the homogeneous nucleation and growth of the iron oxide phase, without formation of heterostructures. An in-depth study was performed on the gold-iron oxide heterostructures to confirm the epitaxial growth of the oxide domain over the Au seed and to analyze the elemental distribution of the components within the heterostructures. Finally, it was found that the modification of the plasmonic properties of the Au nanoparticles are strongly influenced by the architecture of the heterostructure, with a more pronounced damping effect for the systems produced after multi-nucleation events.
引用
收藏
页码:1781 / 1788
页数:8
相关论文
共 50 条
  • [1] Exploring the synthesis conditions to control the morphology of gold-iron oxide heterostructures
    Pablo Tancredi
    Luelc Souza da Costa
    Sebastian Calderon
    Oscar Moscoso-Londoño
    Leandro M. Socolovsky
    Paulo J. Ferreira
    Diego Muraca
    Daniela Zanchet
    Marcelo Knobel
    Nano Research, 2019, 12 : 1781 - 1788
  • [2] Effect of Morphology on Ultrafast Carrier Dynamics in Asymmetric Gold-Iron Oxide Plasmonic Heterodimers
    Korobchevskaya, Kseniya
    George, Chandramohan
    Manna, Liberato
    Comin, Alberto
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (51): : 26924 - 26928
  • [3] Gold-iron oxide dimers for magnetic hyperthermia: the key role of chloride ions in the synthesis to boost the heating efficiency
    Guardia, P.
    Nitti, S.
    Materia, M. E.
    Pugliese, G.
    Yaacoub, N.
    Greneche, J. -M.
    Lefevre, C.
    Manna, L.
    Pellegrino, T.
    JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (24) : 4587 - 4594
  • [4] Green laser assisted gold-iron oxide nanocomposite production
    Nasiri, Hiva
    Dorranian, Davoud
    Sari, Amir Hossein
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2022, 177 (3-4): : 277 - 293
  • [5] Gold-Iron Oxide Catalyst for CO Oxidation: Effect of Support Structure
    Cui, Hui-Zhen
    Guo, Yu
    Wang, Xu
    Jia, Chun-Jiang
    Si, Rui
    CATALYSTS, 2016, 6 (03):
  • [6] Synthesis and Morphology Control of Gold/Iron Oxide Magnetic Nanocomposites via a Simple Aqueous Method
    Li, L.
    Mak, K. Y.
    Leung, C. W.
    Leung, C. H.
    Ruotolo, A.
    Chan, K. Y.
    Chan, W. K.
    Pong, P. W. T.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (01)
  • [7] Geometrical Structure of the Gold-Iron(III) Oxide Interfacial Perimeter for CO Oxidation
    Wei, Xuejiao
    Shao, Bin
    Zhou, Yan
    Li, Yong
    Jin, Chuanchuan
    Liu, Jingyue
    Shen, Wenjie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (35) : 11289 - 11293
  • [8] Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation
    Xing, Lijuan
    ten Brink, Gert H.
    Chen, Bin
    Schmidt, Franz P.
    Haberfehlner, Georg
    Hofer, Ferdinand
    Kooi, Bart J.
    Palasantzas, George
    NANOTECHNOLOGY, 2016, 27 (21)
  • [9] Plasmon Bleaching Dynamics in Colloidal Gold-Iron Oxide Nanocrystal Heterodimers
    Comin, Alberto
    Korobchevskaya, Kseniya
    George, Chandramohan
    Diaspro, Alberto
    Manna, Liberato
    NANO LETTERS, 2012, 12 (02) : 921 - 926
  • [10] Janus plasmonic-magnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging
    Reguera, Javier
    Jimenez de Aberasturi, Dorleta
    Henriksen-Lacey, Malou
    Langer, Judith
    Espinosa, Ana
    Szczupak, Boguslaw
    Wilhelm, Claire
    Liz-Marzan, Luis M.
    NANOSCALE, 2017, 9 (27) : 9467 - 9480