The crosstalk between HIFs and mitochondrial dysfunctions in cancer development

被引:88
作者
Bao, Xingting [1 ,2 ,3 ,4 ,5 ]
Zhang, Jinhua [1 ,2 ,3 ,4 ,5 ]
Huang, Guomin [1 ,2 ,3 ,4 ,5 ]
Yan, Junfang [1 ,2 ,3 ,4 ,5 ]
Xu, Caipeng [1 ,2 ,3 ,4 ,5 ]
Dou, Zhihui [1 ,2 ,3 ,4 ,5 ]
Sun, Chao [1 ,2 ,3 ,4 ,5 ]
Zhang, Hong [1 ,2 ,3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Dept Med Phys, Lanzhou, Peoples R China
[2] Adv Energy Sci & Technol Guangdong Lab, Guangzhou, Guangdong, Peoples R China
[3] Chinese Acad Sci, Key Lab Heavy Ion Radiat Biol & Med, Lanzhou, Peoples R China
[4] Univ Chinese Acad Sci, Coll Life Sci, Beijing, Peoples R China
[5] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 101408, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
RENAL-CELL CARCINOMA; OXIDATIVE STRESS; TCA CYCLE; PHOTODYNAMIC THERAPY; IDH MUTATIONS; COMPLEX I; HYPOXIA; HIF-1-ALPHA; METABOLISM; APOPTOSIS;
D O I
10.1038/s41419-021-03505-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1 alpha. In addition, a product of the Warburg effect, lactate, also induces HIF-1 alpha. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.
引用
收藏
页数:13
相关论文
共 130 条
[91]   PHGDH Expression Is Required for Mitochondrial Redox Homeostasis, Breast Cancer Stem Cell Maintenance, and Lung Metastasis [J].
Samanta, Debangshu ;
Park, Youngrok ;
Andrabi, Shaida A. ;
Shelton, Laura M. ;
Gilkes, Daniele M. ;
Semenza, Gregg L. .
CANCER RESEARCH, 2016, 76 (15) :4430-4442
[92]   Cell-Autonomous Metabolic Reprogramming in Hypoxia [J].
Schito, Luana ;
Rey, Sergio .
TRENDS IN CELL BIOLOGY, 2018, 28 (02) :128-142
[93]   Biological and Clinical Relevance of microRNAs in Mitochondrial Diseases/Dysfunctions [J].
Sekar, Durairaj ;
Johnson, Jayapriya ;
Biruntha, M. ;
Lakhmanan, Ganesh ;
Gurunathan, Deepa ;
Ross, Kehinde .
DNA AND CELL BIOLOGY, 2020, 39 (08) :1379-1384
[94]   IDH mutations associated impact on related cancer epidemiology and subsequent effect toward HIF-1α [J].
Semukunzi, Herve ;
Roy, Debmalya ;
Li, Hongyang ;
Khan, Ghulam Jilany ;
Lyu, Xiaodan ;
Yuan, Shengtao ;
Lin, Sensen .
BIOMEDICINE & PHARMACOTHERAPY, 2017, 89 :805-811
[95]   Apoptotic Cell Death Under Hypoxia [J].
Sendoel, Ataman ;
Hengartner, Michael O. .
PHYSIOLOGY, 2014, 29 (03) :168-176
[96]   Expression and epigenetic regulatory mechanism of BNIP3 in clear cell renal cell carcinoma [J].
Shao, Yanxiang ;
Liu, Zhenhua ;
Liu, Jianbang ;
Wang, Haizhou ;
Huang, Long ;
Lin, Tianhai ;
Liu, Jiyan ;
Wei, Qiang ;
Zeng, Hao ;
He, Gu ;
Li, Xiang .
INTERNATIONAL JOURNAL OF ONCOLOGY, 2019, 54 (01) :348-360
[97]   Clinical, radiological, and genetic characteristics of 16 patients with ACO2 gene defects: Delineation of an emerging neurometabolic syndrome [J].
Sharkia, Rajech ;
Wierenga, Klaas J. ;
Kessel, Amit ;
Azem, Abdussalam ;
Bertini, Enrico ;
Carrozzo, Rosalba ;
Torraco, Alessandra ;
Goffrini, Paola ;
Berti, Camilla Ceccatelli ;
McCormick, M. Eileen ;
Plecko, Barbara ;
Klein, Andrea ;
Abela, Lucia ;
Hengel, Holger ;
Schoels, Ludger ;
Shalev, Stavit ;
Khayat, Morad ;
Mahajnah, Muhammad ;
Spiegel, Ronen .
JOURNAL OF INHERITED METABOLIC DISEASE, 2019, 42 (02) :264-275
[98]   Targeting Mitochondrial Dysfunction and Oxidative Stress in Activated Microglia using Dendrimer-Based Therapeutics [J].
Sharma, Anjali ;
Liaw, Kevin ;
Sharma, Rishi ;
Zhang, Zhi ;
Kannan, Sujatha ;
Kannan, Rangaramanujam M. .
THERANOSTICS, 2018, 8 (20) :5529-5547
[99]   Mitochondrial DNA Integrity: Role in Health and Disease [J].
Sharma, Priyanka ;
Sampath, Harini .
CELLS, 2019, 8 (02)
[100]   Mitochondrial complex II regulates a distinct oxygen sensing mechanism in monocytes [J].
Sharma, Shraddha ;
Wang, Jianming ;
Gomez, Eduardo Cortes ;
Taggart, Robert T. ;
Baysal, Bora E. .
HUMAN MOLECULAR GENETICS, 2017, 26 (07) :1328-1339