The crosstalk between HIFs and mitochondrial dysfunctions in cancer development

被引:88
作者
Bao, Xingting [1 ,2 ,3 ,4 ,5 ]
Zhang, Jinhua [1 ,2 ,3 ,4 ,5 ]
Huang, Guomin [1 ,2 ,3 ,4 ,5 ]
Yan, Junfang [1 ,2 ,3 ,4 ,5 ]
Xu, Caipeng [1 ,2 ,3 ,4 ,5 ]
Dou, Zhihui [1 ,2 ,3 ,4 ,5 ]
Sun, Chao [1 ,2 ,3 ,4 ,5 ]
Zhang, Hong [1 ,2 ,3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Modern Phys, Dept Med Phys, Lanzhou, Peoples R China
[2] Adv Energy Sci & Technol Guangdong Lab, Guangzhou, Guangdong, Peoples R China
[3] Chinese Acad Sci, Key Lab Heavy Ion Radiat Biol & Med, Lanzhou, Peoples R China
[4] Univ Chinese Acad Sci, Coll Life Sci, Beijing, Peoples R China
[5] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 101408, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
RENAL-CELL CARCINOMA; OXIDATIVE STRESS; TCA CYCLE; PHOTODYNAMIC THERAPY; IDH MUTATIONS; COMPLEX I; HYPOXIA; HIF-1-ALPHA; METABOLISM; APOPTOSIS;
D O I
10.1038/s41419-021-03505-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1 alpha. In addition, a product of the Warburg effect, lactate, also induces HIF-1 alpha. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.
引用
收藏
页数:13
相关论文
共 130 条
[1]   Hypoxia-Inducible Factors as an Alternative Source of Treatment Strategy for Cancer [J].
Akanji, Musbau Adewumi ;
Rotimi, Damilare ;
Adeyemi, Oluyomi Stephen .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2019, 2019
[2]   A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration [J].
Ban, Hyun Seung ;
Xu, Xuezhen ;
Jang, Kusik ;
Kim, Inhyub ;
Kim, Bo-Kyung ;
Lee, Kyeong ;
Won, Misun .
PLOS ONE, 2016, 11 (09)
[3]   Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress [J].
Barben, Maya ;
Ail, Divya ;
Storti, Federica ;
Klee, Katrin ;
Schori, Christian ;
Samardzija, Marijana ;
Michalakis, Stylianos ;
Biel, Martin ;
Meneau, Isabelle ;
Blaser, Frank ;
Barthelmes, Daniel ;
Grimm, Christian .
CELL DEATH AND DIFFERENTIATION, 2018, 25 (12) :2071-2085
[4]   Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds [J].
Barbosa, Ana M. ;
Martel, Fatima .
CANCERS, 2020, 12 (01)
[5]   Long-Noncoding RNA (lncRNA) in the Regulation of Hypoxia-Inducible Factor (HIF) in Cancer [J].
Barth, Dominik A. ;
Prinz, Felix ;
Teppan, Julia ;
Jonas, Katharina ;
Klec, Christiane ;
Pichler, Martin .
NON-CODING RNA, 2020, 6 (03)
[6]   AG311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1 α stabilization [J].
Bastian, Anja ;
Matsuzaki, Satoshi ;
Humphries, Kenneth M. ;
Pharaoh, Gavin A. ;
Doshi, Arpit ;
Zaware, Nilesh ;
Gangjee, Aleem ;
Ihnat, Michael A. .
CANCER LETTERS, 2017, 388 :149-157
[7]   Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms [J].
Baumeister, Julian ;
Chatain, Nicolas ;
Hubrich, Annika ;
Maie, Tiago ;
Costa, Ivan G. ;
Denecke, Bernd ;
Han, Lijuan ;
Kuestermann, Caroline ;
Sontag, Stephanie ;
Sere, Kristin ;
Strathmann, Klaus ;
Zenke, Martin ;
Schuppert, Andreas ;
Bruemmendorf, Tim H. ;
Kranc, Kamil R. ;
Koschmieder, Steffen ;
Gezer, Deniz .
LEUKEMIA, 2020, 34 (04) :1062-1074
[8]   Epigenetic Reprogramming of Cancer-Associated Fibroblasts Deregulates Glucose Metabolism and Facilitates Progression of Breast Cancer [J].
Becker, Lisa M. ;
O'Connell, Joyce T. ;
Vo, Annie P. ;
Cain, Margo P. ;
Tampe, Desiree ;
Bizarro, Lauren ;
Sugimoto, Hikaru ;
McGow, Anna K. ;
Asara, John M. ;
Lovisa, Sara ;
McAndrews, Kathleen M. ;
Zielinski, Rafal ;
Lorenzi, Philip L. ;
Zeisberg, Michael ;
Raza, Sughra ;
LeBleu, Valerie S. ;
Kalluri, Raghu .
CELL REPORTS, 2020, 31 (09)
[9]   Alternative Splicing in Angiogenesis [J].
Bowler, Elizabeth ;
Oltean, Sebastian .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (09)
[10]   VHL-Mediated Regulation of CHCHD4 and Mitochondrial Function [J].
Briston, Thomas ;
Stephen, Jenna M. ;
Thomas, Luke W. ;
Esposito, Cinzia ;
Chung, Yuen-Li ;
Syafruddin, Saiful E. ;
Turmaine, Mark ;
Maddalena, Lucas A. ;
Greef, Basma ;
Szabadkai, Gyorgy ;
Maxwell, Patrick H. ;
Vanharanta, Sakari ;
Ashcroft, Margaret .
FRONTIERS IN ONCOLOGY, 2018, 8