Metasurface Freeform Nanophotonics

被引:88
作者
Zhan, Alan [1 ]
Colburn, Shane [2 ]
Dodson, Christopher M. [2 ]
Majumdar, Arka [1 ,2 ]
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
ALVAREZ; SYSTEMS; DESIGN; OPTICS; LENSES;
D O I
10.1038/s41598-017-01908-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their size. Unfortunately, these high curvatures and complex forms are often difficult to manufacture with current technologies, especially at the micron scale. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a silicon nitride based metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 micron along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm corresponding to a change in optical power of -1600 diopters with 100 micron of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for further miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Multiwavelength achromatic metasurfaces by dispersive phase compensation [J].
Aieta, Francesco ;
Kats, Mikhail A. ;
Genevet, Patrice ;
Capasso, Federico .
SCIENCE, 2015, 347 (6228) :1342-1345
[2]   Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces [J].
Aieta, Francesco ;
Genevet, Patrice ;
Kats, Mikhail A. ;
Yu, Nanfang ;
Blanchard, Romain ;
Gahurro, Zeno ;
Capasso, Federico .
NANO LETTERS, 2012, 12 (09) :4932-4936
[3]  
Alvarez L.W., 1967, Google Patents US Patent, Patent No. [US 3305294 A, 3305294, 3,305,294]
[4]  
Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/nnano.2015.186, 10.1038/NNANO.2015.186]
[5]   Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays [J].
Arbabi, Amir ;
Horie, Yu ;
Ball, Alexander J. ;
Bagheri, Mahmood ;
Faraon, Andrei .
NATURE COMMUNICATIONS, 2015, 6
[6]  
Arbabi E., 2016, ARXIV160105847
[7]   High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm [J].
Astilean, S ;
Lalanne, P ;
Chavel, P ;
Cambril, E ;
Launois, H .
OPTICS LETTERS, 1998, 23 (07) :552-554
[8]   The Alvarez and Lohmann refractive lenses revisited [J].
Barbero, Sergio .
OPTICS EXPRESS, 2009, 17 (11) :9376-9390
[9]   Diffractive Alvarez lens [J].
Barton, IM ;
Dixit, SN ;
Summers, LJ ;
Thompson, CA ;
Avicola, K ;
Wilhelmsen, J .
OPTICS LETTERS, 2000, 25 (01) :1-3
[10]   Realizations of focus invariance in optical-digital systems with wave-front coding [J].
Bradburn, S ;
Cathey, WT ;
Dowski, ER .
APPLIED OPTICS, 1997, 36 (35) :9157-9166