On the normal bundle of Levi-flat real hypersurfaces

被引:4
作者
Brinkschulte, Judith [1 ]
机构
[1] Univ Leipzig, Math Inst, PF 100920, D-04009 Leipzig, Germany
关键词
NONEXISTENCE; MANIFOLDS; OPERATOR; DOMAINS; CPN;
D O I
10.1007/s00208-018-1723-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a connected complex manifold of dimension >= 3 and M a smooth compact Levi-flat real hypersurface in X. We show that the normal bundle to the Levi foliation does not admit a Hermitian metric with positive curvature along the leaves. This generalizes a result obtained by Brunella.
引用
收藏
页码:343 / 359
页数:17
相关论文
共 28 条
[1]  
Adachi M, 2015, ANN I FOURIER, V65, P2547
[2]   A local expression of the Diederich-Fornaess exponent and the exponent of conformal harmonic measures [J].
Adachi, Masanori .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (01) :65-79
[3]   On the Ampleness of Positive CR Line Bundles over Levi-flat Manifolds [J].
Adachi, Masanori .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2014, 50 (01) :153-167
[4]  
Andreotti A., 1970, Ann. Sc. Norm. Super. Pisa, V24, P231
[5]  
[Anonymous], 1996, Panor. Syntheses
[6]   The partial derivative-problem with support conditions on some weakly pseudoconvex domains [J].
Brinkschulte, J .
ARKIV FOR MATEMATIK, 2004, 42 (02) :259-282
[7]   On The Dynamics of Codimension One Holomorphic Foliations with Ample Normal Bundle [J].
Brunella, Marco .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) :3101-3113
[8]  
CAMACHO C, 1988, PUBL MATH IHES, V68, P187
[9]  
Cao JG, 2007, MATH Z, V256, P175, DOI 10.1007/s00209-006-0064-5
[10]   L2 SERRE DUALITY ON DOMAINS IN COMPLEX MANIFOLDS AND APPLICATIONS [J].
Chakrabarti, Debraj ;
Shaw, Mei-Chi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (07) :3529-3554