A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures

被引:77
作者
Chen, Xue-Kun [1 ]
Liu, Jun [2 ]
Peng, Zhi-Hua [1 ]
Du, Dan [1 ]
Chen, Ke-Qiu [3 ,4 ]
机构
[1] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China
[2] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
[4] Synerget Innovat Ctr Quantum Effects & Applicat H, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
PHONON TRANSPORT; ENERGY-TRANSPORT; GRAPHENE; RECTIFICATION; CONDUCTIVITY; INTERFACES; BEHAVIORS;
D O I
10.1063/1.4977776
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nonlinear thermal transport in graphene/hexagonal boron nitride (h-BN) heterostructure is investigated by the nonequilibrium molecular dynamics method. It is found that negative differential thermal resistance (NDTR) will appear as the applied temperature difference increases. Detailed phonon spectra analysis reveals that the excited out-of-plane acoustic wave plays an important role in the heat transport across such interface. That is, the mechanical wave results in a significant mismatch between the lattice vibrations of graphene and h-BN domains and hinders interfacial thermal transport. In addition, NDTR can be tuned through the temperature parameter. Interestingly, the regime of NDTR becomes smaller and eventually vanishes with increasing the heterostructure length. However, NDTR is insensitive to the variation of system width. The work may be useful for nanoscale thermal managements utilizing the graphene/h-BN heterostructure. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 60 条
[1]   Nonlinear thermal conductance in single-wall carbon nanotubes: Negative differential thermal resistance [J].
Ai, Bao-quan ;
An, Meng ;
Zhong, Wei-rong .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (03)
[2]   Dimension Dependence of Negative Differential Thermal Resistance in Graphene Nanoribbons [J].
Ai, Bao-quan ;
Zhong, Wei-rong ;
Hu, Bambi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (25) :13810-13815
[3]   Double negative differential thermal resistance induced by nonlinear on-site potentials [J].
Ai, Bao-quan ;
Zhong, Wei-rong ;
Hu, Bambi .
PHYSICAL REVIEW E, 2011, 83 (05)
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]   Two-shell vortex and antivortex dynamics in a Corbino superconducting disk [J].
Cabral, L. R. E. ;
de Aquino, Belisa R. C. H. T. ;
de Souza Silva, Clecio C. ;
Milosevic, Milorad V. ;
Peeters, Francois M. .
PHYSICAL REVIEW B, 2016, 93 (01)
[6]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[7]   Thermal Rectification by Design in Telescopic Si Nanowires [J].
Cartoixa, Xavier ;
Colombo, Luciano ;
Rurali, Riccardo .
NANO LETTERS, 2015, 15 (12) :8255-8259
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[10]   Controllable Thermal Rectification Realized in Binary Phase Change Composites [J].
Chen, Renjie ;
Cui, Yalong ;
Tian, He ;
Yao, Ruimin ;
Liu, Zhenpu ;
Shu, Yi ;
Li, Cheng ;
Yang, Yi ;
Ren, Tianling ;
Zhang, Gang ;
Zou, Ruqiang .
SCIENTIFIC REPORTS, 2015, 5