COEFFICIENTS BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS DEFINED BY AL-OBOUDI DIFFERENTIAL OPERATOR

被引:0
作者
Uyanik, Neslihan [1 ]
Gokkurt Ozdemir, Ozdemir [2 ]
机构
[1] Anadolu Univ, Fac Educ, Dept Math & Sci Educ, Eskisehir, Turkey
[2] Bartin Univ, Fac Educ, Dept Math & Sci Educ, Bartin, Turkey
来源
THERMAL SCIENCE | 2022年 / 26卷 / SpecialIssue2期
关键词
analytic functions; univalent functions; Bi-univalent functions; subordination; Al-Oboudi differential operator;
D O I
10.2298/TSCI22S2583U
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we investigate a new subclass Sigma(n)(delta)(lambda,gamma,phi) of analytic and bi-univalent functions in the open unit disk u = {z:|z|<1}defined by Al-Oboudi differential operator. We obtain coefficient bounds |a(2)| and |a(3)| for functions belonging to subclass Sigma(n)(delta)(lambda,gamma,phi). Relevant connections of the results presented here with various well-known results are briefly indicated.
引用
收藏
页码:S583 / S589
页数:7
相关论文
共 26 条
  • [1] Al-Oboudi FM., 2004, Int. J. Math. Sci, V27, P1429, DOI DOI 10.1155/S0161171204108090
  • [2] Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions
    Ali, Rosihan M.
    Lee, See Keong
    Ravichandran, V.
    Supramaniam, Shamani
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 344 - 351
  • [3] [Anonymous], 1983, GRUNDLEHREN MATH WIS
  • [4] Brannan D.A., 1985, P INT C MATH ANAL IT, VVolume 3, P53, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
  • [5] Brannan D.A., 1979, P NATO ADV STUDY I H
  • [6] Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions
    Bulut, Serap
    Magesh, Nanjundan
    Balaji, Vittalrao Kupparao
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (02) : 113 - 116
  • [7] Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions
    Bulut, Serap
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (06) : 479 - 484
  • [8] Çaglar M, 2017, COMMUN FAC SCI UNIV, V66, P85, DOI 10.1501/Commual_0000000777
  • [9] Coefficient bounds for new subclasses of bi-univalent functions
    Caglar, Murat
    Orhan, Halit
    Yagmur, Nihat
    [J]. FILOMAT, 2013, 27 (07) : 1165 - 1171
  • [10] Deniz E., 2013, J. Class. Anal, V2, P49, DOI [10.7153/jca-02-05, DOI 10.7153/JCA-02-05]