A Jacobi meromorphic form

被引:6
作者
Bayad, A [1 ]
Robert, G [1 ]
机构
[1] UNIV GRENOBLE 1,UFR MATH,INST FOURNIER,F-38402 ST MARTIN DHER,FRANCE
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 325卷 / 05期
关键词
D O I
10.1016/S0764-4442(97)88888-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a complex lattice. Our object of study is a function D-L(z; phi), periodic with period lattice L in the second variable, and analytic in the first variable with normalization condition [GRAPHICS] zD(L)(z; phi) = 1; up to an exponential factor, this function is related to the form F-r(u, v) = theta'(0)theta(u + v)/(theta(u)theta(v)) (see [7], 3), analytic in tau is an element of H (=upper half plane) and in u, v is an element of C, with (u, v) proportional to (z, phi) and theta the Jacobi's triple product. Our main result is that D-L also satisfies a simple additive distribution relation. Indeed if Lambda is a lattice such that L subset of Lambda and [Lambda : L] = l, we have: [GRAPHICS] where t runs over a representative system of Lambda/L. When phi is a torsion point of C/L, we recover known results.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 7 条
[1]  
BAYAD A, UNPB J NUMBER THEORY
[2]  
BAYAD A, UNPUB B SOC MATH FRA
[3]  
FROBENIUS G, 1882, J REINE ANGEW MATH, V93, P53
[4]  
Kubert D. S., 1981, Grundlehren der Mathematischen Wissenschaften, V244
[5]  
Lang S., 1973, ELLIPTIC FUNCTIONS
[6]  
SCHERTZ R, 1991, J NUMBER THEORY, P287
[7]   PERIODS OF MODULAR-FORMS AND JACOBI THETA FUNCTIONS [J].
ZAGIER, D .
INVENTIONES MATHEMATICAE, 1991, 104 (03) :449-465