An evaluation of the Lyapunov characteristic exponent of chaotic continuous systems

被引:21
作者
Rugonyi, S [1 ]
Bathe, KJ [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
stability analysis; Lyapunov characteristic exponent; chaotic behaviour; non-linear; dynamics; dynamic stability;
D O I
10.1002/nme.560
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A procedure to calculate the Lyapunov characteristic exponent of the response of structural continuous systems, discretized using finite element methods, is proposed. The Lyapunov characteristic exponent can be used to characterize the asymptotic stability of the system dynamic response, and it is frequently employed to identify a chaotic behaviour. The proposed procedure can also be used in the stability characterization of fluid-structure interaction systems in which the focus of the analysis is on the behaviour of the structural part. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:145 / 163
页数:19
相关论文
共 25 条
[1]  
[Anonymous], INT J COMP CIVIL STR
[2]   On chaotic oscillations of a laminated composite cylinder subject to periodic application of temperature [J].
Argyris, J ;
Tenek, L ;
Andreadis, I ;
Athanasiou, M ;
Pavlos, G .
CHAOS SOLITONS & FRACTALS, 1998, 9 (09) :1529-1554
[3]   NONLINEAR AND CHAOTIC OSCILLATIONS OF COMPOSITE PLATES AND SHELLS UNDER PERIODIC HEAT LOAD [J].
ARGYRIS, JH ;
TENEK, L .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 122 (3-4) :351-377
[4]  
Argyris JH, 1994, EXPLORATION CHAOS
[5]  
BATHE KJ, 1996, FINITE ELEMENT PROCE
[6]  
BATHE KJ, 1999, P 4 INT C IND APPL M
[7]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[8]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[9]   COMPARISON OF DIFFERENT METHODS FOR COMPUTING LYAPUNOV EXPONENTS [J].
GEIST, K ;
PARLITZ, U ;
LAUTERBORN, W .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (05) :875-893
[10]  
Guckenheimer J., 1983, APPL MATH SCI, V42, DOI DOI 10.1115/1.3167759