Small interfering RNA targeted to hepatitis C virus 5′ nontranslated region exerts potent antiviral effect

被引:67
作者
Kanda, Tatsuo
Steele, Robert
Ray, Ranjit
Ray, Ratna B.
机构
[1] St Louis Univ, Dept Pathol, St Louis, MO 63110 USA
[2] St Louis Univ, Dept Internal Med, St Louis, MO 63110 USA
[3] St Louis Univ, Ctr Liver, St Louis, MO 63110 USA
关键词
D O I
10.1128/JVI.01496-06
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma. Interferon alone or together with ribavirin is the only therapy for HCV infection; however, a significant number of HCV-infected individuals do not respond to this treatment. Therefore, the development of new therapeutic options against HCV is a matter of urgency. In the present study, we have examined vectors carrying short hairpin RNA (shRNA) targeting the 5' nontranslated conserved region of the HCV genome for inhibition of virus replication. Initially, three sequences were selected, and all three shRNAs (psh-53, psh-274, and psh-375) suppressed HCV internal ribosome entry site (IRES)-mediated translation to different degrees in Huh-7 cells. Next, we introduced siRNA into Huh-7.5 cells persistently infected with HCV genotype 2a (JFH1). The most efficient inhibition of JFH1 replication was observed with psh-274, targeted to the portion from subdomain IIId to IIIe of the IRES. Subsequently, Huh-7.5 cells stably expressing psh-274 further displayed a significant reduction in HCV JFH1 replication. The effect of psh-274 on cell-culture-grown HCV genotype 1a (H77) was also evaluated, and inhibition of virus replication and infectivity titers was observed. In the absence of a cell-culture-grown HCV genotype 1b, the effects of psh-274 on subgenomic and full-length replicons were examined, and efficient inhibition of genome replication was observed. Therefore, we have identified a conserved sequence targeted to the HCV genome that can inhibit replication of different genotypes, suggesting the potential of siRNA as an additional therapeutic modality against HCV infection.
引用
收藏
页码:669 / 676
页数:8
相关论文
共 61 条
[1]   Novel insights into hepatitis C virus replication and persistence [J].
Bartenschlager, R ;
Frese, M ;
Pietschmann, T .
ADVANCES IN VIRUS RESEARCH, VOL. 63, 2004, 63 :71-+
[2]   Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication [J].
Blight, KJ ;
McKeating, JA ;
Rice, CM .
JOURNAL OF VIROLOGY, 2002, 76 (24) :13001-13014
[3]  
BORDEN D, 2003, J VIROL, V77, P11531
[4]   SECONDARY STRUCTURE OF THE 5' NONTRANSLATED REGIONS OF HEPATITIS-C VIRUS AND PESTIVIRUS GENOMIC RNAS [J].
BROWN, EA ;
ZHANG, HC ;
PING, LH ;
LEMON, SM .
NUCLEIC ACIDS RESEARCH, 1992, 20 (19) :5041-5045
[5]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[6]   Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells [J].
Cai, ZH ;
Zhang, C ;
Chang, KS ;
Jiang, JY ;
Ahn, BC ;
Wakita, T ;
Liang, TJ ;
Luo, GX .
JOURNAL OF VIROLOGY, 2005, 79 (22) :13963-13973
[7]  
Clayton J., 2004, NATURE, V431, P599
[8]   Hepatitis C [J].
Di Bisceglie, AM .
LANCET, 1998, 351 (9099) :351-355
[9]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[10]   Poliovirus escape from RNA interference: Short interfering RNA-target recognition and implications for therapeutic approaches [J].
Gitlin, L ;
Stone, JK ;
Andino, R .
JOURNAL OF VIROLOGY, 2005, 79 (02) :1027-1035