Periodic solutions for delay Lotka-Volterra competition systems

被引:60
作者
Li, YK [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
关键词
Distributed delay; state dependent delay; periodic solution; competition system; topological degree;
D O I
10.1006/jmaa.2000.6784
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the continuation theorem of coincidence degree theory, sufficient and realistic conditions are obtained for the existence of positive periodic solutions for the periodic distributed delay Lotka-Volterra competition system du(i)(t)/dt = u(i)(t)[r(i)(t) - a(ii)(t)u(t)(t) - Sigma(j=1j not equal i)(n)a(ij)(t) integral(-Tij)(0)K(ij)(s)u(j)(t+s) ds], i = 1, 2,..., n, and the periodic state dependent delay Lotka-Volterra competition system du(i)(t)/dt = u(i)(t)[r(i)(t) - a(ii)(t)u(i)(t) - Sigma(j=1j not equal i)(n)a(ij)(t)u(j)(t-tau(j)(t,u(1)(t),..., u(n)(t)))], i = 1, 2,...,n, where r(i), a(ii) > 0, a(ij) greater than or equal to 0 (j not equal i, i, j = 1, 2,..., n) are continuous omega-periodic functions, T-ij epsilon (0, infinity)(j not equal i, i, j = 1, 2,..., n), K-ij epsilon C([- T-ij, 0], (0, infinity)), integral(-Tij)(0)K(ij)(s) ds = 1 (j not equal i, i, j = 1, 2,..., n), tau(i) epsilon C(Rn+1, R), and tau(i) (i = 1, 2,..., n) are omega-periodic with respect to their first arguments, respectively. (C) 2000 Academic Press.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 14 条
[1]  
Gaines RE, 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[2]   TIME DELAYS IN N-SPECIES COMPETITION .1. GLOBAL STABILITY IN CONSTANT ENVIRONMENTS [J].
GOPALSAMY, K ;
AHLIP, RA .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 27 (03) :427-441
[3]  
GOPALSAMY K, 1980, B MATH BIOL, V42, P729
[4]  
Gopalsamy K., 2013, Stability and Oscillations in Delay Differential Equations of Population Dynamics, V74
[5]  
Gopalsamy K., 1995, METHODS APPL ANAL, V2, P38
[6]  
HAIE JK, 1993, INTRO FUNCTIONAL DIF
[7]   COINCIDENCE DEGREE AND PERIODIC-SOLUTIONS OF NEUTRAL EQUATIONS [J].
HALE, JK ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :295-307
[8]  
Li Y, 1997, J MATH ANAL APPL, V214, P11
[9]  
Li YK, 1999, P AM MATH SOC, V127, P1331
[10]   On a periodic neutral delay Lotka-Volterra system [J].
Li, YK .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (06) :767-778