Existence of local solutions for fractional difference equations with Dirichlet boundary conditions

被引:7
作者
Henderson, Johnny [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Fractional derivatives and integrals; discrete version of topics in analysis; boundary value problems; fixed points; SYSTEM;
D O I
10.1080/10236198.2018.1505882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a real number and a natural number, conditions are given for the existence of solutions of the nu th-order Atici-Eloe fractional difference equation, and satisfying the Dirichlet boundary conditions .
引用
收藏
页码:751 / 756
页数:6
相关论文
共 30 条
[1]   Two-point boundary value problems for finite fractional difference equations [J].
Atici, Ferhan M. ;
Eloe, Paul W. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (04) :445-456
[2]   Modeling with fractional difference equations [J].
Atici, Ferhan M. ;
Senguel, Sevgi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :1-9
[3]  
Atici FM, 2009, P AM MATH SOC, V137, P981
[4]   Systems of semipositone discrete fractional boundary value problems [J].
Dahal, Rajendra ;
Duncan, David ;
Goodrich, Christopher S. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (03) :473-491
[5]  
Das S, 2012, SPRINGERBR APPL SCI, P1, DOI 10.1007/978-3-642-23117-9
[6]  
Das S., 2009, FUNCTIONAL FRACTIONA
[7]  
Goodrich C.S., 2011, Int. J. Difference Equ, V6, P17
[8]  
Goodrich C. S., 2015, Discrete Fractional Calculus, DOI DOI 10.1007/978-3-319-25562-0
[9]   Coercive nonlocal elements in fractional differential equations [J].
Goodrich, Christopher S. .
POSITIVITY, 2017, 21 (01) :377-394
[10]   Summation equations with sign changing kernels and applications to discrete fractional boundary value problems [J].
Goodrich, Christopher S. .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2016, 57 (02) :201-229