Dirac-Weyl fermions with arbitrary spin in two-dimensional optical superlattices

被引:100
|
作者
Lan, Z. [1 ]
Goldman, N. [2 ]
Bermudez, A. [3 ,4 ]
Lu, W. [1 ]
Oehberg, P. [1 ]
机构
[1] Heriot Watt Univ, Dept Phys, SUPA, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
[3] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
[4] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
基金
英国工程与自然科学研究理事会;
关键词
HUBBARD-MODEL; MAGNETIC-FIELDS; BERRYS PHASE; ATOMS; LATTICE; INDEX;
D O I
10.1103/PhysRevB.84.165115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dirac-Weyl fermions are massless relativistic particles with a well-defined helicity which arise in the context of high-energy physics. Here we propose a quantum simulation of these paradigmatic fermions using multicomponent ultracold atoms in a two-dimensional square optical lattice. We find that laser-assisted spin-dependent hopping, specifically tuned to the (2s + 1)-dimensional representations of the su(2) Lie algebra, directly leads to a regime where the emerging massless excitations correspond to Dirac-Weyl fermions with arbitrary pseudospin s. We show that this platform hosts two different phases: a semimetallic phase that occurs for half-integer s, and a metallic phase that contains a flat zero-energy band at integer s. These phases host a variety of interesting effects, such as a very rich anomalous quantum Hall effect and a remarkable multirefringent Klein tunneling. In addition, we show that these effects are directly related to the number of underlying Dirac-Weyl species and zero modes.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Optical properties of two-dimensional Dirac-Weyl materials with a flatband
    Ye, Li-Li
    Han, Chen-Di
    Lai, Ying-Cheng
    APPLIED PHYSICS LETTERS, 2024, 124 (06)
  • [2] Magneto-optics of general pseudospin-s two-dimensional Dirac-Weyl fermions
    Malcolm, J. D.
    Nicol, E. J.
    PHYSICAL REVIEW B, 2014, 90 (03)
  • [3] Magneto-optical conductivity of anisotropic two-dimensional Dirac-Weyl materials
    Oliva-Leyva, M.
    Wang, Chumin
    ANNALS OF PHYSICS, 2017, 384 : 61 - 70
  • [4] DYNAMICS OF DIRAC AND WEYL FERMIONS ON A TWO-DIMENSIONAL SURFACE
    KAVALOV, AR
    KOSTOV, IK
    SEDRAKYAN, AG
    PHYSICS LETTERS B, 1986, 175 (03) : 331 - 334
  • [5] Spin-1 Dirac-Weyl fermions protected by bipartite symmetry
    Lin, Zeren
    Liu, Zhirong
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (21):
  • [6] DIRAC AND WEYL FERMIONS COUPLED TO TWO-DIMENSIONAL SURFACES - DETERMINANTS
    SEDRAKYAN, AG
    STORA, R
    PHYSICS LETTERS B, 1987, 188 (04) : 442 - 446
  • [7] Massless Dirac-Weyl fermions in a T3 optical lattice
    Bercioux, D.
    Urban, D. F.
    Grabert, H.
    Haeusler, W.
    PHYSICAL REVIEW A, 2009, 80 (06):
  • [8] Spin susceptibility of three-dimensional Dirac-Weyl semimetals
    Ominato, Yuya
    Nomura, Kentaro
    PHYSICAL REVIEW B, 2018, 97 (24)
  • [9] Dirac-Weyl Semimetal: Coexistence of Dirac and Weyl Fermions in Polar Hexagonal ABC Crystals
    Gao, Heng
    Kim, Youngkuk
    Venderbos, Jorn W. F.
    Kane, C. L.
    Mele, E. J.
    Rappe, Andrew M.
    Ren, Wei
    PHYSICAL REVIEW LETTERS, 2018, 121 (10)
  • [10] Tunable unconventional integer quantum Hall effect in two-dimensional Dirac-Weyl systems
    Jin, Y. J.
    Xu, Y.
    Xiao, X. L.
    Chen, Z. J.
    Xu, H.
    PHYSICAL REVIEW B, 2024, 109 (08)