Rough bilinear singular integrals

被引:27
|
作者
Grafakos, Loukas [1 ]
He, Danqing [2 ]
Honzik, Petr [3 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Sun Yat Sen Zhongshan Univ, Dept Math, Guangzhou, Guangdong, Peoples R China
[3] Charles Univ Prague, Dept Math, Prague 11636 1, Czech Republic
关键词
Singular integrals; Multilinear operators; Rough operators; WEAK TYPE 1; HILBERT-TRANSFORMS; UNIFORM BOUNDS; COMMUTATORS; OPERATORS;
D O I
10.1016/j.aim.2017.12.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rough bilinear singular integral, introduced by Coifman and Meyer [8], T-Omega (f, g)(x) = p.v. integral R-n integral R-n vertical bar(y, z)(-2n) Omega((y, z)/vertical bar(y, z)vertical bar)f(x - y)g(x - z)dydz, when Omega is a function in L-q(S2n-1) with vanishing integral and 2 <= q <= infinity. When q = infinity we obtain boundedness for To from L-p1 (R-n) x L-p2 (R-n) to L-p (R-n) when 1 < p1, p2 < infinity and 1/p = 1/p1 + 1/p2. For q = 2 we obtain that T Omega is bounded from L-2(R-n) x L-2(R-n) x L-1(R-n). For q between 2 and infinity we obtain the analogous boundedness on a set of indices around the point (1/2,1/2,1). To obtain our results we introduce a new bilinear technique based on tensor-type wavelet decompositions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:54 / 78
页数:25
相关论文
共 50 条
  • [21] A note on maximal singular integrals with rough kernels
    Zhang, Xiao
    Liu, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [22] A weak type estimate for rough singular integrals
    Lerner, Andrei K.
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) : 1583 - 1602
  • [23] A note on weighted bounds for rough singular integrals
    Lerner, Andrei K.
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (01) : 77 - 80
  • [24] On rough singular integrals related to homogeneous mappings
    Feng Liu
    Suzhen Mao
    Huoxiong Wu
    Collectanea Mathematica, 2016, 67 : 113 - 132
  • [25] Bilinear rough singular integral operators on Morrey spaces
    Daniel Salim
    Yoshihiro Sawano
    Pebrudal Zanu
    The Journal of Analysis, 2020, 28 : 817 - 825
  • [26] Bilinear rough singular integral operators on Morrey spaces
    Salim, Daniel
    Sawano, Yoshihiro
    Zanu, Pebrudal
    JOURNAL OF ANALYSIS, 2020, 28 (03) : 817 - 825
  • [27] A New Class of Weights Adapted to Rough Singular Integrals and Marcinkiewicz Integrals
    Zhang, Chun Jie
    You, Ying
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (08) : 1275 - 1288
  • [28] Rough singular integrals associated with surfaces of Van der Corput type
    Liu Feng
    Wu Huo-xiong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (01) : 86 - 100
  • [29] Quantitative weighted estimates for rough homogeneous singular integrals
    Hytonen, Tuomas P.
    Roncal, Luz
    Tapiola, Olli
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 218 (01) : 133 - 164
  • [30] A note on rough singular integrals in Triebel-Lizorkin spaces and Besov spaces
    Liu, Feng
    Wu, Huoxiong
    Zhang, Daiqing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,