Motion of a circular cylinder and n point vortices in a perfect fluid

被引:36
作者
Borisov, AV [1 ]
Mamaev, IS [1 ]
Ramodanov, SM [1 ]
机构
[1] Inst Comp Sci, Izhevsk 426034, Russia
关键词
D O I
10.1070/RD2003v008n04ABEH000257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper studies the system of a rigid body interacting dynamically with point vortices in a perfect fluid. For arbitrary value of vortex strengths and circulation around the cylinder the system is shown to be Hamiltonian (the corresponding Poisson bracket structure is rather complicated). We also reduced the number of degrees of freedom of the system by two using the reduction by symmetry technique and performed a thorough qualitative analysis of the integrable system of a cylinder interacting with one vortex.
引用
收藏
页码:449 / 462
页数:14
相关论文
共 18 条
[1]  
Arnold V.I., 1991, MATH METHODS CLASSIC
[2]   An integrability of the problem on motion of cylinder and vortex in the ideal fluid [J].
Borisov, AV ;
Mamaev, IS .
REGULAR & CHAOTIC DYNAMICS, 2003, 8 (02) :163-166
[3]  
BORISOV AV, 1999, POISSON STRUCTURES L
[4]  
BORISOV AV, UFN, V173, P407
[5]  
Demidovich B P., 1967, LECT MATH THEORY STA
[6]  
DIRAC PAM, 2001, LECT THEORETICAL PHY, V2, P129
[7]  
Greenhill A. G., 1877, Q J PURE APPL MATH, V15, P10
[8]  
Havelock TH, 1931, PHILOS MAG, V11, P617
[9]  
Kirchhoff G., 1874, Vorlesungen uber Mathematische Physik
[10]  
Lamb H., 1945, HYDRODYNAMICS