Deep Neural Networks and Machine Learning Radiomics Modelling for Prediction of Relapse in Mantle Cell Lymphoma

被引:22
作者
Lisson, Catharina Silvia [1 ,2 ,3 ]
Lisson, Christoph Gerhard [1 ]
Mezger, Marc Fabian [1 ,3 ,4 ]
Wolf, Daniel [1 ,3 ,4 ]
Schmidt, Stefan Andreas [1 ,2 ]
Thaiss, Wolfgang M. [1 ,3 ,5 ]
Tausch, Eugen [6 ,7 ]
Beer, Ambros J. [2 ,3 ,5 ,8 ,9 ]
Stilgenbauer, Stephan [6 ,7 ]
Beer, Meinrad [1 ,2 ,3 ,8 ,9 ]
Goetz, Michael [1 ,3 ,10 ]
机构
[1] Univ Hosp Ulm, Dept Diagnost & Intervent Radiol, Albert Einstein Allee 23, D-89081 Ulm, Germany
[2] Univ Hosp Ulm, Ctr Personalized Med ZPM, Albert Einstein Allee 23, D-89081 Ulm, Germany
[3] Artificial Intelligence Expt Radiol XAIRAD, Ulm, Germany
[4] Ulm Univ, Inst Media Informat, Visual Comp Grp, D-89081 Ulm, Germany
[5] Univ Hosp Ulm, Dept Nucl Med, Albert Einstein Allee 23, D-89081 Ulm, Germany
[6] Univ Hosp Ulm, Dept Internal Med 3, Albert Einstein Allee 23, D-89081 Ulm, Germany
[7] Univ Hosp Ulm, Comprehens Canc Ctr Ulm CCCU, Albert Einstein Allee 23, D-89081 Ulm, Germany
[8] Univ Hosp Ulm, Ctr Translat Imaging Mol Man MoMan, Dept Internal Med 2, Albert Einstein Allee 23, D-89081 Ulm, Germany
[9] Univ Hosp Ulm, I2SouI Innovat Imaging Surg Oncol Ulm, Albert Einstein Allee 23, D-89081 Ulm, Germany
[10] German Canc Res Ctr, Div Med Image Comp, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
关键词
radiomics; machine learning; deep learning; deep neural networks; personalised oncology; precision imaging; TUMOR HETEROGENEITY; F-18-FDG PET/CT; PRECISION MEDICINE; PROGNOSTIC VALUE; FDG-PET; CLASSIFICATION; SURVIVAL; FEATURES; CANCER; INFORMATION;
D O I
10.3390/cancers14082008
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Mantle cell lymphoma (MCL) is an aggressive lymphoid tumour with a poor prognosis. There exist no routine biomarkers for the early prediction of relapse. Our study compared the potential of radiomics-based machine learning and 3D deep learning models as non-invasive biomarkers to risk-stratify MCL patients, thus promoting precision imaging in clinical oncology. Mantle cell lymphoma (MCL) is a rare lymphoid malignancy with a poor prognosis characterised by frequent relapse and short durations of treatment response. Most patients present with aggressive disease, but there exist indolent subtypes without the need for immediate intervention. The very heterogeneous behaviour of MCL is genetically characterised by the translocation t(11;14)(q13;q32), leading to Cyclin D1 overexpression with distinct clinical and biological characteristics and outcomes. There is still an unfulfilled need for precise MCL prognostication in real-time. Machine learning and deep learning neural networks are rapidly advancing technologies with promising results in numerous fields of application. This study develops and compares the performance of deep learning (DL) algorithms and radiomics-based machine learning (ML) models to predict MCL relapse on baseline CT scans. Five classification algorithms were used, including three deep learning models (3D SEResNet50, 3D DenseNet, and an optimised 3D CNN) and two machine learning models based on K-nearest Neighbor (KNN) and Random Forest (RF). The best performing method, our optimised 3D CNN, predicted MCL relapse with a 70% accuracy, better than the 3D SEResNet50 (62%) and the 3D DenseNet (59%). The second-best performing method was the KNN-based machine learning model (64%) after principal component analysis for improved accuracy. Our optimised CNN developed by ourselves correctly predicted MCL relapse in 70% of the patients on baseline CT imaging. Once prospectively tested in clinical trials with a larger sample size, our proposed 3D deep learning model could facilitate clinical management by precision imaging in MCL.
引用
收藏
页数:22
相关论文
共 116 条
[1]   Observation as the initial management strategy in patients with mantle cell lymphoma [J].
Abrisqueta, P. ;
Scott, D. W. ;
Slack, G. W. ;
Steidl, C. ;
Mottok, A. ;
Gascoyne, R. D. ;
Connors, J. M. ;
Sehn, L. H. ;
Savage, K. J. ;
Gerrie, A. S. ;
Villa, D. .
ANNALS OF ONCOLOGY, 2017, 28 (10) :2489-2495
[2]   Towards precision medicine: from quantitative imaging to radiomics [J].
Acharya, U. Rajendra ;
Hagiwara, Yuki ;
Sudarshan, Vidya K. ;
Chan, Wai Yee ;
Ng, Kwan Hoong .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2018, 19 (01) :6-24
[3]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[4]   Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in mantle cell lymphoma [J].
Albano, Domenico ;
Bosio, Giovanni ;
Bianchetti, Nicola ;
Pagani, Chiara ;
Re, Alessandro ;
Tucci, Alessandra ;
Giubbini, Raffaele ;
Bertagna, Francesco .
ANNALS OF NUCLEAR MEDICINE, 2019, 33 (07) :449-458
[5]   Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation [J].
Alhaj, Taqwa Ahmed ;
Siraj, Maheyzah Md ;
Zainal, Anazida ;
Elshoush, Huwaida Tagelsir ;
Elhaj, Fatin .
PLOS ONE, 2016, 11 (11)
[6]   Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study [J].
Antunes, Jacob ;
Viswanath, Satish ;
Rusu, Mirabela ;
Valls, Laia ;
Hoimes, Christopher ;
Avril, Norbert ;
Madabhushi, Anant .
TRANSLATIONAL ONCOLOGY, 2016, 9 (02) :155-162
[7]  
Bailly C, 2020, HAEMATOLOGICA, V105, pE33, DOI 10.3324/haematol.2019.223016
[8]   Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters [J].
Berenguer, Roberto ;
del Rosario Pastor-Juan, Maria ;
Canales-Vazquez, Jesus ;
Castro-Garcia, Miguel ;
Villas, Maria Victoria ;
Mansilla Legorburo, Francisco ;
Sabater, Sebastia .
RADIOLOGY, 2018, 288 (02) :407-415
[9]   Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Durdux, Catherine ;
Taieb, Julien ;
Berger, Anne ;
Coriat, Romain ;
Chaussade, Stanislas ;
Dousset, Bertrand ;
Nordlinger, Bernard ;
Burgun, Anita .
SCIENTIFIC REPORTS, 2018, 8
[10]   Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. [J].
Blanc-Durand, Paul ;
Jegou, Simon ;
Kanoun, Salim ;
Berriolo-Riedinger, Alina ;
Bodet-Milin, Caroline ;
Kraeber-Bodere, Francoise ;
Carlier, Thomas ;
Le Gouill, Steven ;
Casasnovas, Rene-Olivier ;
Meignan, Michel ;
Itti, Emmanuel .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (05) :1362-1370