What's new and what's next in diffusion MRI preprocessing

被引:51
作者
Tax, Chantal M. W. [1 ,2 ]
Bastiani, Matteo [3 ,4 ]
Veraart, Jelle [5 ]
Garyfallidis, Eleftherios [6 ]
Irfanoglu, M. Okan [7 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
[2] Cardiff Univ, Brain Res Imaging Ctr, Sch Phys & Astron, Cardiff, Wales
[3] Univ Nottingham, Sir Peter Mansfield Imaging Ctr, Sch Med, Nottingham, England
[4] Univ Oxford, Wellcome Ctr Integrat Neuroimaging WIN, Ctr Funct Magnet Resonance Imaging Brain FMRIB, Oxford, England
[5] NYU, Grossman Sch Med, Ctr Biomed Imaging, New York, NY 10003 USA
[6] Indiana Univ, Dept Intelligent Syst Engn, Bloomington, IN USA
[7] Natl Inst Biomed Imaging & Bioengn, Quantitat Med Imaging Sect, NIH, Bethesda, MD USA
基金
美国国家卫生研究院; 荷兰研究理事会; 英国惠康基金;
关键词
Diffusion MRI; Artifacts; Distortion; Preprocessing; ECHO-PLANAR IMAGES; SUSCEPTIBILITY ARTIFACT CORRECTION; MAXIMUM-LIKELIHOOD-ESTIMATION; MAGNETIC-RESONANCE DATA; EDDY-CURRENT ARTIFACTS; LINEAR LEAST-SQUARES; MOTION CORRECTION; DISTORTION CORRECTION; GEOMETRIC DISTORTION; NYQUIST GHOST;
D O I
10.1016/j.neuroimage.2021.118830
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion MRI (dMRI) provides invaluable information for the study of tissue microstructure and brain connectivity, but suffers from a range of imaging artifacts that greatly challenge the analysis of results and their interpretability if not appropriately accounted for. This review will cover dMRI artifacts and preprocessing steps, some of which have not typically been considered in existing pipelines or reviews, or have only gained attention in recent years: brain/skull extraction, B-matrix incompatibilities w.r.t the imaging data, signal drift, Gibbs ringing, noise distribution bias, denoising, between- and within-volumes motion, eddy currents, outliers, susceptibility distortions, EPI Nyquist ghosts, gradient deviations, B-1 bias fields, and spatial normalization. The focus will be on "what's new" since the notable advances prior to and brought by the Human Connectome Project (HCP), as presented in the predecessing issue on "Mapping the Connectome" in 2013. In addition to the development of novel strategies for dMRI preprocessing, exciting progress has been made in the availability of open source tools and reproducible pipelines, databases and simulation tools for the evaluation of preprocessing steps, and automated quality control frameworks, amongst others. Finally, this review will consider practical considerations and our view on "what's next" in dMRI preprocessing.
引用
收藏
页数:35
相关论文
共 377 条
[1]   Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline [J].
Ades-Aron, Benjamin ;
Veraart, Jelle ;
Kochunov, Peter ;
McGuire, Stephen ;
Sherman, Paul ;
Kellner, Elias ;
Novikov, Dmitry S. ;
Fieremans, Els .
NEUROIMAGE, 2018, 183 :532-543
[2]   Effective noise estimation and filtering from correlated multiple-coil MR data [J].
Aja-Fernandez, Santiago ;
Brion, Veronique ;
Tristan-Vega, Antonio .
MAGNETIC RESONANCE IMAGING, 2013, 31 (02) :272-285
[3]   Real-Time Optical Motion Correction for Diffusion Tensor Imaging [J].
Aksoy, Murat ;
Forman, Christoph ;
Straka, Matus ;
Skare, Stefan ;
Holdsworth, Samantha ;
Hornegger, Joachim ;
Bammer, Roland .
MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (02) :366-378
[4]   Elimination of eddy current artifacts in diffusion-weighted echo-planar images: The use of bipolar gradients [J].
Alexander, AL ;
Tsuruda, JS ;
Parker, DL .
MAGNETIC RESONANCE IN MEDICINE, 1997, 38 (06) :1016-1021
[5]   Imaging brain microstructure with diffusion MRI: practicality and applications [J].
Alexander, Daniel C. ;
Dyrby, Tim B. ;
Nilsson, Markus ;
Zhang, Hui .
NMR IN BIOMEDICINE, 2019, 32 (04)
[6]   Image quality transfer and applications in diffusion MRI [J].
Alexander, Daniel C. ;
Zikic, Darko ;
Ghosh, Aurobrata ;
Tanno, Ryutaro ;
Wottschel, Viktor ;
Zhang, Jiaying ;
Kaden, Enrico ;
Dyrby, Tim B. ;
Sotiropoulos, Stamatios N. ;
Zhang, Hui ;
Criminisi, Antonio .
NEUROIMAGE, 2017, 152 :283-298
[7]   Confound modelling in UK Biobank brain imaging [J].
Alfaro-Almagro, Fidel ;
McCarthy, Paul ;
Afyouni, Soroosh ;
Andersson, Jesper L. R. ;
Bastiani, Matteo ;
Miller, Karla L. ;
Nichols, Thomas E. ;
Smith, Stephen M. .
NEUROIMAGE, 2021, 224
[8]   Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank [J].
Alfaro-Almagro, Fidel ;
Jenkinson, Mark ;
Bangerter, Neal K. ;
Andersson, Jesper L. R. ;
Griffanti, Ludovica ;
Douaud, Gwenaelle ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Hernandez-Fernandez, Moises ;
Vallee, Emmanuel ;
Vidaurre, Diego ;
Webster, Matthew ;
McCarthy, Paul ;
Rorden, Christopher ;
Daducci, Alessandro ;
Alexander, Daniel C. ;
Zhang, Hui ;
Dragonu, Iulius ;
Matthews, Paul M. ;
Miller, Karla L. ;
Smith, Stephen M. .
NEUROIMAGE, 2018, 166 :400-424
[9]   Volumetric navigators for real-time motion correction in diffusion tensor imaging [J].
Alhamud, A. ;
Tisdall, M. Dylan ;
Hess, Aaron T. ;
Hasan, Khader M. ;
Meintjes, Ernesta M. ;
van der Kouwe, Andre J. W. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (04) :1097-1108
[10]   PHASE-CONSTRAINED DATA EXTRAPOLATION METHOD FOR REDUCTION OF TRUNCATION ARTIFACTS [J].
AMARTUR, S ;
LIANG, ZP ;
BOADA, F ;
HAACKE, EM .
JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1991, 1 (06) :721-724