The Beneficial Role of the Cometals Pd and Au in the Carbon-Supported PtPdAu Catalyst Toward Promoting Ethanol Oxidation Kinetics in Alkaline Fuel Cells: Temperature Effect and Reaction Mechanism

被引:101
作者
Datta, Jayati [1 ]
Dutta, Abhijit [1 ]
Mukherjee, Sanjeev [2 ]
机构
[1] Bengal Engn & Sci Univ, Electrochem & Fuel Cell Lab, Dept Chem, Howrah 711103, W Bengal, India
[2] Northeastern Univ, Dept Chem & Biol Chem, Egan Ctr 317, Boston, MA 02115 USA
关键词
SURFACE-AREA; PLATINUM NANOPARTICLES; IMPEDANCE SPECTROSCOPY; ANODE ELECTROCATALYST; PARTICLE-SIZE; FORMIC-ACID; METHANOL; ELECTROOXIDATION; PATHWAYS; ALLOYS;
D O I
10.1021/jp200318m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical investigations have been carried out to study the oxidation kinetics of ethanol in alkaline solution on carbon-supported ternary alloy catalysts Pt-Pd-Au within the temperature range of 20-80 degrees C. To derive a better understanding of the contribution of each of the metallic components toward the catalytic oxidation of ethanol, some of the investigations were extended to the individual noble metals for comparison, however, at a single temperature (20 degrees C). The individual metals could barely show their catalytic efficiency toward ethanol oxidations when compared to the alloyed catalyst. The ternary catalyst exhibited much lower values and a larger temperature dependence of onset potential for ethanol oxidation. With the rise of potential, the apparent activation energy (E-a(app)) for ethanol oxidation on the Pt/C electrode increased, whereas a decreasing trend was observed with the Pt30Pd38Au32/C electrode. It was suggested that the Pt30Pd38Au32/C electrode bears an excellent tolerance toward ethanolic residues, for the temperature range studied. In correlation with the results obtained from the above study, attempts were made to elucidate the oxidation reaction mechanism, and this further evoked interest in extending the work to the estimation of products formed during oxidation of ethanol within the same temperature range through ion chromatographic analysis. The pronounced increase in the quantity of oxidation products, such as acetate and carbonate, obtained over the ternary catalyst as compared to single Pt, substantiates the kinetic enhancement of ethanol oxidation, attributable to the cometal partnership between Pd and Au when incorporated in the Pt matrix. In summary, the multimetallic nanocrystallites can not only show their capability of extracting the best possible number of electrons from the alcohol fuel in alkaline solutions, harnessing more energy, but also, at the same time, bring down the cost of the catalyst material by reducing the Pt content to a considerable extent.
引用
收藏
页码:15324 / 15334
页数:11
相关论文
共 39 条
[1]   Alkaline direct alcohol fuel cells [J].
Antolini, E. ;
Gonzalez, E. R. .
JOURNAL OF POWER SOURCES, 2010, 195 (11) :3431-3450
[2]   The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts [J].
Arenz, M ;
Mayrhofer, KJJ ;
Stamenkovic, V ;
Blizanac, BB ;
Tomoyuki, T ;
Ross, PN ;
Markovic, NM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (18) :6819-6829
[3]   MECHANISM OF ELECTRO-OXIDATION OF METHANOL ON PLATINUM ELECTRODE [J].
BAGOTZKY, VS ;
VASSILYEW, YB .
ELECTROCHIMICA ACTA, 1967, 12 (09) :1323-+
[4]  
Bockris J. O., 2002, MODERN ELECTROCHEM A, V2A
[5]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[6]   Parallel pathways of ethanol oxidation: The effect of ethanol concentration [J].
Camara, GA ;
Iwasita, T .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 578 (02) :315-321
[7]   Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells [J].
Chan, KY ;
Ding, J ;
Ren, JW ;
Cheng, SA ;
Tsang, KY .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (04) :505-516
[8]   Enhancement of the electrooxidation of ethanol on a Pt-PEM electrode modified by tin.: Part I:: Half cell study [J].
Delime, F ;
Léger, JM ;
Lamy, C .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1999, 29 (11) :1249-1254
[9]   Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation [J].
Du, H. -Y. ;
Wang, C. -H. ;
Hsu, H. -C. ;
Chang, S. -T. ;
Chen, U. -S. ;
Yen, S. C. ;
Chen, L. C. ;
Shih, H. -C. ;
Chen, K. H. .
DIAMOND AND RELATED MATERIALS, 2008, 17 (4-5) :535-541
[10]   An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution [J].
Fang, Xiang ;
Wang, Lianqin ;
Shen, Pei Kang ;
Cui, Guofeng ;
Bianchini, Claudio .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1375-1378