Hierarchically Ordered Porous CoOOH Thin-Film Electrodes for High-Performance Supercapacitors

被引:50
作者
Dhawale, Dattatray S. [1 ]
Kim, Sehwan [1 ,2 ]
Park, Dae-Hwan [4 ]
Choy, Jin-Ho [1 ,4 ]
Al-deyab, Salem S. [5 ]
Ariga, Katsuhiko [3 ]
Kim, Eunkyoung [2 ]
Vinu, Ajayan [1 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[2] Yonsei Univ, Dept Chem & Bimol Engn, Seoul 120749, South Korea
[3] Natl Inst Mat Sci, WPI MANA, Tsukuba, Ibaraki, Japan
[4] Ewha Womans Univ, Dept Chem & Nanosci, Seoul, South Korea
[5] King Saud Univ, Dept Chem, Petrochem Res Chair, Riyadh, Saudi Arabia
基金
澳大利亚研究理事会;
关键词
chemical-bath deposition; electrochemistry; porous CoOOH; supercapacitors; thin films; ENERGY-CONVERSION; COBALT HYDROXIDE; NANOSTRUCTURED MATERIALS; CHEMICAL-SYNTHESIS; HOLLOW SPHERES; STORAGE; DEPOSITION; NICKEL; RUO2; OXYHYDROXIDE;
D O I
10.1002/celc.201402365
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report a simple, cost-effective, and potentially scalable approach for the fabricating hierarchically porous CoOOH thin-film supercapacitors by combining a soft-templating and a chemical-bath deposition (CBD) method. The prepared electrode materials exhibit uniform morphology and highly ordered macropores, achieving a maximum specific capacitance of 387Fg(-1) at a current density of 1mAcm(-2), with a high energy of 19Whkg(-1) and power density of 1713Wkg(-1). In addition, the porous CoOOH electrodes show good stability with a cycling efficiency >90% after 5000 charge-discharge cycles, which could lead to the generation of novel energy-storage devices with better efficiencies.
引用
收藏
页码:497 / 502
页数:6
相关论文
共 48 条
[1]   Photochemical versus Thermal Synthesis of Cobalt Oxyhydroxide Nanocrystals [J].
Alvarado, Samuel R. ;
Guo, Yijun ;
Ruberu, T. Purnima A. ;
Bakac, Andreja ;
Vela, Javier .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (18) :10382-10389
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   BEHAVIOR OF NICKEL-HYDROXIDE ELECTRODES AFTER PROLONGED POTENTIAL FLOAT [J].
ARMSTRONG, RD ;
WANG, H .
ELECTROCHIMICA ACTA, 1991, 36 (5-6) :759-762
[4]   ESCA STUDY OF TERMINATION OF PASSIVATION OF ELEMENTAL METALS [J].
BARR, TL .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (16) :1801-1810
[5]  
Bruce P.G., 2008, Angew. Chem, V120, P2972, DOI DOI 10.1002/ANGE.200702505
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[8]   COBALT-BASED GLASSY-CARBON CHEMICALLY MODIFIED ELECTRODE FOR CONSTANT-POTENTIAL AMPEROMETRIC DETECTION OF CARBOHYDRATES IN FLOW-INJECTION ANALYSIS AND LIQUID-CHROMATOGRAPHY [J].
CATALDI, TRI ;
CASELLA, IG ;
DESIMONI, E ;
ROTUNNO, T .
ANALYTICA CHIMICA ACTA, 1992, 270 (01) :161-171
[9]   Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage [J].
Chen, Jun Song ;
Tan, Yi Ling ;
Li, Chang Ming ;
Cheah, Yan Ling ;
Luan, Deyan ;
Madhavi, Srinivasan ;
Boey, Freddy Yin Chiang ;
Archer, Lynden A. ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (17) :6124-6130
[10]   Stable nanostructured polyaniline electrode for supercapacitor application [J].
Dhawale, D. S. ;
Vinu, A. ;
Lokhande, C. D. .
ELECTROCHIMICA ACTA, 2011, 56 (25) :9482-9487