Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate - Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair

被引:165
作者
Lavrik, OI
Prasad, R
Sobol, RW
Horton, JK
Ackermann, EJ
Wilson, SH
机构
[1] NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA
[2] Russian Acad Sci, Siberian Div, Novosibirsk Bioorgan Chem Inst, Novosibirsk 630090, Russia
[3] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
D O I
10.1074/jbc.M102125200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To examine the interaction of mammalian base excision repair (BER) enzymes with DNA intermediates formed during BER, we used a novel photoaffinity labeling probe and mouse embryonic fibroblast cellular extracts. The probe was formed in situ, using an end-labeled oligonucleotide containing a synthetic abasic site; this site was incised by apurinic/apyrimidinic endonuclease creating a nick with 3 ' -hydroxyl and 5 ' -reduced sugar phosphate groups at the margins, and then a dNMP carrying a photoreactive adduct was added to the 3 ' -hydroxyl group. With near-UV light (312 nm) exposure of the extract/probe mixture, six proteins were strongly labeled. Four of these include poly(ADP-ribose) polymerase-1 (PARP-1) and the BER participants flap endonuclease-1, DNA polymerase beta, and apurinic/apyrimidinic endonuclease, The amount of the probe cross-linked to PARP-1 was greater than that cross-linked to the other proteins. The specificity of PARP-1 labeling was examined using various competitor oligonucleotides and DNA probes with alternate structures. PARP-1 labeling was stronger with a DNA representing a BER intermediate than with a nick in double-stranded DNA, These results indicate that proteins interacting preferentially with a photoreactive BER intermediate can be selected from the crude cellular extract.
引用
收藏
页码:25541 / 25548
页数:8
相关论文
共 52 条
[1]   PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase [J].
Amé, JC ;
Rolli, V ;
Schreiber, V ;
Niedergang, C ;
Apiou, F ;
Decker, P ;
Muller, S ;
Hoger, T ;
Murcia, JMD ;
de Murcia, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (25) :17860-17868
[2]  
Beard WA, 1995, METHOD ENZYMOL, V262, P98
[3]   Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway [J].
Bennett, RAO ;
Wilson, DM ;
Wong, D ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7166-7169
[4]   pADPRT-2:: a novel mammalian polymerizing(ADP-ribosyl)transferase gene related to truncated pADPRT homologues in plants and Caenorhabditis elegans [J].
Berghammer, H ;
Ebner, M ;
Marksteiner, R ;
Auer, B .
FEBS LETTERS, 1999, 449 (2-3) :259-263
[5]   Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA [J].
Biade, S ;
Sobol, RW ;
Wilson, SH ;
Matsumoto, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (02) :898-902
[6]   PREPARING NUCLEI FROM CELLS IN MONOLAYER-CULTURES SUITABLE FOR COUNTING AND FOR FOLLOWING SYNCHRONIZED CELLS THROUGH THE CELL-CYCLE [J].
BUTLER, WB .
ANALYTICAL BIOCHEMISTRY, 1984, 141 (01) :70-73
[7]   XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro [J].
Caldecott, KW ;
Aoufouchi, S ;
Johnson, P ;
Shall, S .
NUCLEIC ACIDS RESEARCH, 1996, 24 (22) :4387-4394
[8]   REGULATION OF DNA-LIGASE ACTIVITY BY POLY(ADP-RIBOSE) [J].
CREISSEN, D ;
SHALL, S .
NATURE, 1982, 296 (5854) :271-272
[9]   Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions [J].
D'Amours, D ;
Desnoyers, S ;
D'Silva, I ;
Poirier, GG .
BIOCHEMICAL JOURNAL, 1999, 342 :249-268
[10]   Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1 [J].
Dantzer, F ;
de la Rubia, G ;
Murcia, JMD ;
Hostomsky, Z ;
de Murcia, G ;
Schreiber, V .
BIOCHEMISTRY, 2000, 39 (25) :7559-7569