Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges

被引:796
作者
Feng, Di [1 ,2 ]
Haase-Schutz, Christian [3 ,4 ]
Rosenbaum, Lars [1 ]
Hertlein, Heinz [3 ]
Glaser, Claudius [1 ]
Timm, Fabian [1 ]
Wiesbeck, Werner [4 ]
Dietmayer, Klaus [2 ]
机构
[1] Robert Bosch GmbH, Corp Res, Driver Assistance Syst & Automated Driving, D-71272 Renningen, Germany
[2] Ulm Univ, Inst Measurement Control & Microtechnol, D-89081 Ulm, Germany
[3] Robert Bosch GmbH, Chassis Syst Control, Engn Cognit Syst, Automated Driving, D-74232 Abstatt, Germany
[4] Karlsruhe Inst Technol, Inst Radio Frequency Engn & Elect, D-76131 Karlsruhe, Germany
关键词
Multi-modality; object detection; semantic segmentation; deep learning; autonomous driving; NEURAL-NETWORKS; ROAD; FUSION; LIDAR; ENVIRONMENTS; SET;
D O I
10.1109/TITS.2020.2972974
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Recent advancements in perception for autonomous driving are driven by deep learning. In order to achieve robust and accurate scene understanding, autonomous vehicles are usually equipped with different sensors (e.g. cameras, LiDARs, Radars), and multiple sensing modalities can be fused to exploit their complementary properties. In this context, many methods have been proposed for deep multi-modal perception problems. However, there is no general guideline for network architecture design, and questions of "what to fuse", "when to fuse", and "how to fuse" remain open. This review paper attempts to systematically summarize methodologies and discuss challenges for deep multi-modal object detection and semantic segmentation in autonomous driving. To this end, we first provide an overview of on-board sensors on test vehicles, open datasets, and background information for object detection and semantic segmentation in autonomous driving research. We then summarize the fusion methodologies and discuss challenges and open questions. In the appendix, we provide tables that summarize topics and methods. We also provide an interactive online platform to navigate each reference: https://boschresearch.github.io/multimodalperception/.
引用
收藏
页码:1341 / 1360
页数:20
相关论文
共 250 条
[41]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[42]   3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection [J].
Chen, Xiaozhi ;
Kundu, Kaustav ;
Zhu, Yukun ;
Ma, Huimin ;
Fidler, Sanja ;
Urtasun, Raquel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (05) :1259-1272
[43]   Multi-View 3D Object Detection Network for Autonomous Driving [J].
Chen, Xiaozhi ;
Ma, Huimin ;
Wan, Ji ;
Li, Bo ;
Xia, Tian .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6526-6534
[44]   Monocular 3D Object Detection for Autonomous Driving [J].
Chen, Xiaozhi ;
Kundu, Kaustav ;
Zhang, Ziyu ;
Ma, Huimin ;
Fidler, Sanja ;
Urtasun, Raquel .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2147-2156
[45]   LiDAR-Video Driving Dataset: Learning Driving Policies Effectively [J].
Chen, Yiping ;
Wang, Jingkang ;
Li, Jonathan ;
Lu, Cewu ;
Luo, Zhipeng ;
Xue, Han ;
Wang, Cheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5870-5878
[46]   Learning Semantic Segmentation from Synthetic Data: A Geometrically Guided Input-Output Adaptation Approach [J].
Chen, Yuhua ;
Li, Wen ;
Chen, Xiaoran ;
Van Gool, Luc .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1841-1850
[47]   Progressive LiDAR Adaptation for Road Detection [J].
Chen, Zhe ;
Zhang, Jing ;
Tao, Dacheng .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) :693-702
[48]   KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted Driving [J].
Choi, Yukyung ;
Kim, Namil ;
Hwang, Soonmin ;
Park, Kibaek ;
Yoon, Jae Shin ;
An, Kyounghwan ;
Kweon, In So .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (03) :934-948
[49]  
Cipolla R, 2019, ICLR, P1
[50]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223