Spectral theory in ordered Banach algebras

被引:7
作者
Mouton, Sonja [1 ]
Raubenheimer, Heinrich [2 ]
机构
[1] Stellenbosch Univ, Dept Math Sci, Private Bag X1, ZA-7602 Matieland, South Africa
[2] Univ Johannesburg, Dept Math, POB 524, ZA-2006 Auckland Pk, South Africa
关键词
Ordered Banach algebra; Spectral theory; COMPACT-OPERATORS; FREDHOLM THEORY; POSITIVE OPERATORS; ELEMENTS; CONTINUITY; LATTICES; DOMINATION;
D O I
10.1007/s11117-016-0440-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a survey of the development of the spectral theory in ordered Banach algebras; from its roots in operator theory to the modern abstract context.
引用
收藏
页码:755 / 786
页数:32
相关论文
共 67 条
[11]   Fredholm theory in ordered Banach algebras [J].
Benjamin, Ronalda ;
Mouton, Sonja .
QUAESTIONES MATHEMATICAE, 2016, 39 (05) :643-664
[12]  
Bonsall F.F., 1973, Complete Normed Algebras
[13]   Gelfand-Hille type theorems in ordered Banach algebras [J].
Braatvedt, Gareth ;
Brits, Rudi ;
Raubenheimer, Heinrich .
POSITIVITY, 2009, 13 (01) :39-50
[14]   Noncontinuity of spectrum for the adjoint of an operator [J].
Burlando, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) :173-182
[15]  
Burlando L., 1994, FUNCTIONAL ANAL OPER, V30, P53
[16]   ON THE PERIPHERAL SPECTRUM OF POSITIVE OPERATORS [J].
CASELLES, V .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 58 (02) :144-160
[17]  
Conway J., 1979, Integral Equations and Operator Theory, V2, P174
[18]   IRREDUCIBLE COMPACT-OPERATORS [J].
DEPAGTER, B .
MATHEMATISCHE ZEITSCHRIFT, 1986, 192 (01) :149-153
[19]   MEASURES OF NON-COMPACTNESS OF OPERATORS IN BANACH-LATTICES [J].
DEPAGTER, B ;
SCHEP, AR .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 78 (01) :31-55
[20]   COMPACT-OPERATORS IN BANACH-LATTICES [J].
DODDS, PG ;
FREMLIN, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :287-320