EXPONENTIAL CONTRACTION IN WASSERSTEIN DISTANCE ON STATIC AND EVOLVING MANIFOLDS

被引:0
作者
Cheng, Li-Juan [1 ,2 ]
Thalmaier, Anton [1 ]
Zhang, Shao-Qin [3 ]
机构
[1] Univ Luxembourg, Dept Math, Maison Nombre, L-4364 Esch Sur Alzette, Luxembourg
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Peoples R China
[3] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2021年 / 66卷 / 01期
基金
中国国家自然科学基金;
关键词
Wasserstein distance; diffusion process; coupling; Ricci curvature; Ricci flow; exponential contraction; TIME;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, exponential contraction in Wasserstein distance for heat semigroups of diffusion processes on Riemannian manifolds is established under curvature conditions where Ricci curvature is not necessarily required to be non-negative. Compared to the results of Wang (2016), we focus on explicit estimates for the exponential contraction rate. Moreover, we show that our results extend to manifolds evolving under a geometric flow. As application, for the time-inhomogeneous semigroups, we obtain a gradient estimate with an exponential contraction rate under weak curvature conditions, as well as uniqueness of the corresponding evolution system of measures.
引用
收藏
页码:107 / 129
页数:23
相关论文
共 17 条
[1]  
[Anonymous], 2014, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
[2]   Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below [J].
Arnaudon, M ;
Thalmaier, A ;
Wang, FY .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03) :223-233
[3]   Brownian motion with respect to a metric depending on time; definition, existence and applications to Ricci flow [J].
Arnaudon, Marc ;
Coulibaly, Kolehe Abdoulaye ;
Thalmaier, Anton .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (13-14) :773-778
[4]   Horizontal Diffusion in C1 Path Space [J].
Arnaudon, Marc ;
Coulibaly, Kolehe Abdoulaye ;
Thalmaier, Anton .
SEMINAIRE DE PROBABILITES XLIII, 2011, 2006 :73-94
[5]   Evolution systems of measures and semigroup properties on evolving manifolds [J].
Cheng, Li-Juan ;
Thalmaier, Anton .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
[6]   Diffusion semigroup on manifolds with time-dependent metrics [J].
Cheng, Li-Juan .
FORUM MATHEMATICUM, 2017, 29 (04) :775-798
[7]  
Da Prato G, 2008, PROG PROBAB, V59, P115
[8]   Reflection couplings and contraction rates for diffusions [J].
Eberle, Andreas .
PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (3-4) :851-886
[9]   Reflection coupling and Wasserstein contractivity without convexity [J].
Eberle, Andreas .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (19-20) :1101-1104
[10]  
Kuwada K., 2013, RIMS KOKYUROKU BESSA, P61