A multilevel correction adaptive finite element method for Kohn-Sham equation

被引:23
作者
Hu, Guanghui [1 ,2 ]
Xie, Hehu [3 ,4 ]
Xu, Fei [5 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
[2] UM Zhuhai Res Inst, Zhuhai, Guangdong, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[5] Beijing Univ Technol, Beijing Inst Sci & Engn Comp, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Density functional theory; Kohn-Sham equation; Multilevel correction; Adaptive finite element method; GROUND-STATE SOLUTION; MULTIGRID METHOD; DIMENSIONAL APPROXIMATIONS; NUMERICAL-ANALYSIS; CONVERGENCE; DISCRETIZATION;
D O I
10.1016/j.jcp.2017.11.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:436 / 449
页数:14
相关论文
共 32 条
[1]  
Adams RA., 1975, Sobolev Spaces
[2]   Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems [J].
Andrade, Xavier ;
Strubbe, David ;
De Giovannini, Umberto ;
Hjorth Larsen, Ask ;
Oliveira, Micael J. T. ;
Alberdi-Rodriguez, Joseba ;
Varas, Alejandro ;
Theophilou, Iris ;
Helbig, Nicole ;
Verstraete, Matthieu J. ;
Stella, Lorenzo ;
Nogueira, Fernando ;
Aspuru-Guzik, Alan ;
Castro, Alberto ;
Marques, Miguel A. L. ;
Rubio, Angel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (47) :31371-31396
[3]   Numerical Solution of the Kohn-Sham Equation by Finite Element Methods with an Adaptive Mesh Redistribution Technique [J].
Bao, Gang ;
Hu, Guanghui ;
Liu, Di .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (02) :372-391
[4]   An h-adaptive finite element solver for the calculations of the electronic structures [J].
Bao, Gang ;
Hu, Guanghui ;
Liu, Di .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (14) :4967-4979
[5]   NUMERICAL ANALYSIS OF THE PLANEWAVE DISCRETIZATION OF SOME ORBITAL-FREE AND KOHN-SHAM MODELS [J].
Cances, Eric ;
Chakir, Rachida ;
Maday, Yvon .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02) :341-388
[6]   Numerical Analysis of Nonlinear Eigenvalue Problems [J].
Cances, Eric ;
Chakir, Rachida ;
Maday, Yvon .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) :90-117
[7]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550
[8]   A full multigrid method for eigenvalue problems [J].
Chen, Hongtao ;
Xie, Hehu ;
Xu, Fei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 322 :747-759
[9]   ADAPTIVE FINITE ELEMENT APPROXIMATIONS FOR KOHN-SHAM MODELS [J].
Chen, Huajie ;
Dai, Xiaoying ;
Gong, Xingao ;
He, Lianhua ;
Zhou, Aihui .
MULTISCALE MODELING & SIMULATION, 2014, 12 (04) :1828-1869
[10]   Numerical analysis of finite dimensional approximations of Kohn-Sham models [J].
Chen, Huajie ;
Gong, Xingao ;
He, Lianhua ;
Yang, Zhang ;
Zhou, Aihui .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (02) :225-256