Real homogeneous spaces, Galois cohomology, and Reeder puzzles

被引:5
作者
Borovoi, Mikhail [1 ]
Evenor, Zachi [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Real homogeneous space; Reeder puzzle; Simply connected real group; Real Galois cohomology; Labelings of a Dynkin diagram;
D O I
10.1016/j.jalgebra.2016.07.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected absolutely simple algebraic group defined over the field of real numbers R. Let H be a simply connected semisimple R-subgroup of G. We consider the homogeneous space X = G/H. We ask: how many connected components has X(R)? We give a method of answering this question. Our method is based on our solutions of generalized Reeder puzzles. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 365
页数:59
相关论文
共 30 条
[11]  
Bourbaki N., 1981, Groupes et algebres de Lie
[12]  
Carter R., 1972, Pure and Applied Mathematics
[13]  
Conrad B., 2016, PANOR SYNTHESES, V46, P193
[14]  
Conrad B., 2014, Panor. Syntheses, V42/43, P93
[15]  
Demazure M., 1970, Lecture Notes in Mathematics, V152
[16]  
Demazure Michel A., 1970, Lecture Notes in Mathematics, V151
[17]   Degree 5 Invariant of E8 [J].
Garibaldi, Skip ;
Semenov, Nikita .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (19) :3746-3762
[18]  
Gorbatsevich V.V., 1994, ENCY MATH SCI, V41
[19]  
Helgason S., 1978, Differential Geometry, Lie Groups, and Symmetric Spaces, V80
[20]  
Kats V. G., 1969, Funct. Anal. Appl., V3, P252, DOI 10.1007/bf01676631