Real homogeneous spaces, Galois cohomology, and Reeder puzzles

被引:5
作者
Borovoi, Mikhail [1 ]
Evenor, Zachi [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Real homogeneous space; Reeder puzzle; Simply connected real group; Real Galois cohomology; Labelings of a Dynkin diagram;
D O I
10.1016/j.jalgebra.2016.07.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected absolutely simple algebraic group defined over the field of real numbers R. Let H be a simply connected semisimple R-subgroup of G. We consider the homogeneous space X = G/H. We ask: how many connected components has X(R)? We give a method of answering this question. Our method is based on our solutions of generalized Reeder puzzles. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:307 / 365
页数:59
相关论文
共 30 条
[1]  
Adams J., ARXIV13107917MATHGR
[2]  
[Anonymous], 2011, CAMBRIDGE STUDIES AD
[3]  
[Anonymous], 1970, LECT NOTES MATH
[4]  
ATIYAH MF, 1967, ALGEBRAIC NUMBER THE
[5]  
Borel A., 1972, Inst. Hautes Etudes Sci. Publ. Math., V41, P253
[6]  
Borel A, 1964, Comment. Math. Helv., V39, P111, DOI [DOI 10.1007/BF02566948, 10.1007/BF02566948]
[7]  
Borovoi M., ARXIV14015913MATHGR
[8]  
Borovoi M., ARXIV 1506 06252 MAT
[9]   Stably Cayley Groups in Characteristic Zero [J].
Borovoi, Mikhail ;
Kunyavskii, Boris ;
Lemire, Nicole ;
Reichstein, Zinovy .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (19) :5340-5397
[10]   GALOIS COHOMOLOGIES OF REAL REDUCTIVE GROUPS AND REAL FORMS OF SIMPLE LIE-ALGEBRAS [J].
BOROVOI, MV .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1988, 22 (02) :135-136