Hermite-Hadamard type inequalities for the product of (α, m)-convex functions

被引:0
作者
Yin, Hong-Ping [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Inner Mongolia Univ Nat, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
[3] Henan Polytech Univ, Inst Math, Jiaozuo City 454010, Henan, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2015年 / 8卷 / 03期
关键词
Hermite-Hadamard type inequality; (alpha; m)-convex function; product; Holder inequality; CONVEX-FUNCTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the authors establish some Hermite-Hadamard type inequalities for the product of two (alpha; m)-convex functions. (C) 2015 All rights reserved.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 2013, Transylv. J. Math. Mech.
[2]  
[Anonymous], 1993, SEMINAR FUNCTIONAL E
[3]   Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions [J].
Bai, Rui-Fang ;
Qi, Feng ;
Xi, Bo-Yan .
FILOMAT, 2013, 27 (01) :1-7
[4]  
Ozdemir M. E., 2008, JIPAM J INEQUAL PURE, V9
[5]  
Pachpatte B.G., 2003, RGMIA RES REP COLL, V6, P1
[6]  
Shuang Y., 2013, ANALYSIS-UK, V33, P197, DOI [10.1524/anly.2013.1192, DOI 10.1524/ANLY.2013.1192]
[7]  
Toader G., 1985, P C APPR OPT CLUJ NA, P329
[8]  
Toader G. H., 1993, Stud. Univ. Babes-Bolyai Math., V38, P21
[9]  
Xi B.-Y., 2013, NONLINEAR FUNCT ANAL, V18, P163
[10]  
Xi B.-Y., 2013, ADV INEQUAL APPL, V2, P1