Giant 5.8% magnetic-field-induced strain in additive manufactured Ni-Mn-Ga magnetic shape memory alloy

被引:27
作者
Laitinen, Ville [1 ]
Saren, Andrey [1 ]
Sozinov, Alexei [1 ]
Ullakko, Kari [1 ]
机构
[1] Lappeenranta Lahti Univ Technol LUT, Mat Phys Lab, Lappeenranta 53850, Finland
基金
芬兰科学院;
关键词
Additive manufacturing; Laser powder bed fusion; Ferromagnetic shape memory; Twinning; Ni-Mn-Ga; TWIN-BOUNDARY MOTION; 1-PERCENT;
D O I
10.1016/j.scriptamat.2021.114324
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Laser powder bed fusion (L-PBF) additive manufacturing process was employed to manufacture polycrystalline Ni-Mn-Ga samples. The samples were heat-treated for chemical homogenization and grain growth. It is demonstrated that the chemical composition, resulting martensitic crystal structures, and phase transformation temperatures of the L-PBF-built Ni-Mn-Ga can be precisely changed in-situ by controlling the selective evaporation of Mn through adjusting the process parameters. Subsequently, repeatable and fully reversible magnetic-field-induced strain of 5.8% was measured in a single crystalline grain of an additive manufactured polycrystalline Ni-Mn-Ga sample exhibiting a 10M martensitic structure at ambient temperature. The results indicate that L-PBF can be used to manufacture Ni-Mn-Ga devices containing active parts that can be strained by an external magnetic field. (c) 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:7
相关论文
共 30 条
[1]   Traveling surface undulation on a Ni-Mn-Ga single crystal element [J].
Armstrong, Andrew ;
Karki, Bibek ;
Smith, Aaron ;
Mullner, Peter .
SMART MATERIALS AND STRUCTURES, 2021, 30 (08)
[2]   Magnetic Shape Memory Micropump for Submicroliter Intracranial Drug Delivery in Rats [J].
Barker, Samuel ;
Rhoads, Eric ;
Lindquist, Paul ;
Vreugdenhil, Martin ;
Mullner, Peter .
JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME, 2016, 10 (04)
[3]   4D printing of net shape parts made from Ni-Mn-Ga magnetic shape-memory alloys [J].
Caputo, Matthew P. ;
Berkowitz, Ami E. ;
Armstrong, Andrew ;
Mullner, Peter ;
Solomon, C. Virgil .
ADDITIVE MANUFACTURING, 2018, 21 :579-588
[4]  
Chmielus M, 2009, NAT MATER, V8, P863, DOI [10.1038/NMAT2527, 10.1038/nmat2527]
[5]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[6]   A 1% magnetostrain in polycrystalline 5M Ni-Mn-Ga [J].
Gaitzsch, U. ;
Poetschke, M. ;
Roth, S. ;
Rellinghaus, B. ;
Schultz, L. .
ACTA MATERIALIA, 2009, 57 (02) :365-370
[7]   Stable magnetic-field-induced strain above 1% in polycrystalline Ni-Mn-Ga [J].
Gaitzsch, Uwe ;
Romberg, Jan ;
Poetschke, Martin ;
Roth, Stefan ;
Muellner, Peter .
SCRIPTA MATERIALIA, 2011, 65 (08) :679-682
[8]   Magnetic Shape Memory Phenomena [J].
Heczko, Oleg ;
Scheerbaum, Nils ;
Gutfleisch, Oliver .
NANOSCALE MAGNETIC MATERIALS AND APPLICATIONS, 2009, :399-+
[9]   Sensing strain with Ni-Mn-Ga [J].
Hobza, Anthony ;
Patrick, Charles L. ;
Ullakko, Kari ;
Rafla, Nader ;
Lindquist, Paul ;
Mulliner, Peter .
SENSORS AND ACTUATORS A-PHYSICAL, 2018, 269 :137-144
[10]   Magnetic Shape Memory Alloys as smart materials for micro-positioning devices [J].
Hubert, A. ;
Calchand, N. ;
Le Gorrec, Y. ;
Gauthier, J. -Y. .
ADVANCED ELECTROMAGNETICS, 2012, 1 (02) :75-84