Motif detection inspired by immune memory

被引:1
作者
Wilson, W. [1 ]
Birkin, P. [1 ]
Aickelin, U. [1 ]
机构
[1] Univ Nottingham, Sch Comp Sci, Nottingham NG8 1BB, England
基金
英国工程与自然科学研究理事会;
关键词
heuristics; time series; motif detection; artificial immune systems; immune memory;
D O I
10.1057/jors.2010.81
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the motif tracking algorithm (MTA), a novel immune-inspired pattern identification tool that is able to identify variable length unknown motifs that repeat within time series data. The algorithm searches from a neutral perspective that is independent of the data being analysed and the underlying motifs. In this paper we test the flexibility of the MTA by applying it to the search for patterns in two industrial data sets. The algorithm is able to identify a population of meaningful motifs in both cases, and the value of these motifs is discussed. Journal of the Operational Research Society (2011) 62, 253-265. doi:10.1057/jors.2010.81 Published online 21 July 2010
引用
收藏
页码:253 / 265
页数:13
相关论文
共 24 条
  • [1] Bell E B, 1997, Semin Immunol, V9, P347, DOI 10.1006/smim.1997.0092
  • [2] CD4+ T-cell memory, CD45R subsets and the persistence of antigen - a unifying concept
    Bell, EB
    Sparshott, SM
    Bunce, C
    [J]. IMMUNOLOGY TODAY, 1998, 19 (02): : 60 - 64
  • [3] A METHOD FOR FAST DATABASE SEARCH FOR ALL K-NUCLEOTIDE REPEATS
    BENSON, G
    WATERMAN, MS
    [J]. NUCLEIC ACIDS RESEARCH, 1994, 22 (22) : 4828 - 4836
  • [4] CHIU B, 2003, 9 ACM SIGKDD INT C K, P493
  • [5] Chowdhury D., 1999, ARTIFICIAL IMMUNE SY, P89, DOI [10.1007/978-3-642-59901-9_5, DOI 10.1007/978-3-642-59901-9_5]
  • [6] Learning and optimization using the clonal selection principle
    de Castro, LN
    Von Zuben, FJ
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (03) : 239 - 251
  • [7] Espinosa J, 1998, FUZZY LOGIC AND INTELLIGENT TECHNOLOGIES FOR NUCLEAR SCIENCE AND INDUSTRY, P151
  • [8] FALOUTSOS C, 1994, SIGMOD, P419, DOI DOI 10.1145/191839.191925
  • [9] Fu T.chung., 2001, Notes KDD2001 Workshop on Temporal Data Mining, P27
  • [10] GUAN X, 1996, IEEE T CONTROL SYSTE