Triboelectric nanogenerator with mechanical switch and clamp circuit for low ripple output

被引:16
|
作者
Yu, Xin [1 ,2 ]
Wang, Zhenjie [1 ,2 ]
Zhao, Da [2 ]
Ge, Jianwei [1 ,2 ]
Cheng, Tinghai [2 ,3 ]
Wang, Zhong Lin [2 ,3 ,4 ]
机构
[1] Changchun Univ Technol, Sch Elect & Elect Engn, Jilin 130012, Jilin, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] CUSTech Inst Technol, Wenzhou 325024, Zhejiang, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
triboelectric nanogenerator; low ripple coefficient; clamp circuit; mechanical switch; energy harvesting; ENERGY; DRIVEN;
D O I
10.1007/s12274-021-3828-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For new renewable clean energy, triboelectric nanogenerators (TENGs) have shown great potential in response to the world energy crisis. Nevertheless, the alternating-current signal generated by a TENG needs to be converted into a direct-current signal to be effective in applications. Therefore, a power management circuit, comprising a clamp rectifier circuit and a mechanical switch, is proposed for the conversion and produces a signal having a low ripple coefficient. The power management circuit adopts a clamp circuit as the rectifier circuit to increase the rectified voltage, and reduces the loss resulted from the components by reducing the use of discrete components; the electronic switch in the buck regulator circuit is replaced with a mechanical switch to reduce cost and complexity. In a series of experiments, this power management circuit displayed a stable output voltage with a ripple voltage of 0.07 V, crest factor of 1.01, and ripple coefficient of 2.2%. The TENG provides a feasible method to generate stable electric energy and to supply power to low-consumption electronic devices.
引用
收藏
页码:2077 / 2082
页数:6
相关论文
共 50 条
  • [1] Triboelectric nanogenerator with mechanical switch and clamp circuit for low ripple output
    Xin Yu
    Zhenjie Wang
    Da Zhao
    Jianwei Ge
    Tinghai Cheng
    Zhong Lin Wang
    Nano Research, 2022, 15 : 2077 - 2082
  • [2] Improving the Output Efficiency of Triboelectric Nanogenerator by a Power Regulation Circuit
    Li, Wenbo
    Leng, Baichuan
    Hu, Shengyu
    Cheng, Xiaojun
    SENSORS, 2023, 23 (10)
  • [3] Mechanical spring discharge-based multipillar triboelectric nanogenerator with enhanced power output
    Kim, Dongchang
    Heo, Deokjae
    Cha, Kyunghwan
    Song, Myunghwan
    Son, Jin-ho
    Kim, Sunghan
    Lin, Zong-Hong
    Choi, Kyungwho
    Chung, Jihoon
    Lee, Sangmin
    NANO ENERGY, 2023, 107
  • [4] Output voltage modulation in triboelectric nanogenerator by printed ion gel capacitors
    Lee, Ju Hyun
    Park, Yun Sung
    Cho, Sunghwan
    Kang, In Seok
    Kim, Jin Kon
    Jeong, Unyong
    NANO ENERGY, 2018, 54 : 367 - 374
  • [5] A novel interface circuit for triboelectric nanogenerator
    Wuqi Yu
    Jiahao Ma
    Zhaohua Zhang
    Tianling Ren
    Journal of Semiconductors, 2017, (10) : 100 - 104
  • [6] Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch
    Yang, Junjie
    Yang, Feng
    Zhao, Lei
    Shang, Wanyu
    Qin, Huaifang
    Wang, Shujie
    Jiang, Xiaohong
    Cheng, Gang
    Du, Zuliang
    NANO ENERGY, 2018, 46 : 220 - 228
  • [7] Inherent asymmetry of the current output in a triboelectric nanogenerator
    Dharmasena, R. D. I. G.
    NANO ENERGY, 2020, 76
  • [8] Multi-purpose triboelectric-electromagnetic hybrid nanogenerator with a mechanical motion-controlled switch for harvesting low-frequency energy
    Zhang, Yan
    Fan, Kangqi
    Zhu, Jiuling
    Wu, Shuxin
    Zhang, Sheng
    Cheng, Tinghai
    Wang, Zhong Lin
    NANO ENERGY, 2022, 104
  • [9] A bidirectional direct current triboelectric nanogenerator with the mechanical rectifier
    Qiao, Guangda
    Wang, Jianlong
    Yu, Xin
    Jia, Rong
    Cheng, Tinghai
    Wang, Zhong Lin
    NANO ENERGY, 2021, 79
  • [10] Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment
    Wang, Nannan
    Zheng, Youbin
    Feng, Yange
    Zhou, Feng
    Wang, Daoai
    NANO ENERGY, 2020, 77 (77)