Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space

被引:3
作者
Tu, Xi [1 ]
Yin, Zhaoyang [2 ,3 ]
机构
[1] Foshan Univ, Dept Math, Foshan 528000, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[3] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 191卷 / 04期
关键词
A generalized Camassa-Holm equation; Local well-posedness; The critical Besov space; Blow-up; Global existence; SHALLOW-WATER EQUATION; GLOBAL WEAK SOLUTIONS; CAUCHY-PROBLEM; INTEGRABLE EQUATION; SHOCK-WAVES; EXISTENCE; TRAJECTORIES; BREAKING;
D O I
10.1007/s00605-020-01371-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we mainly study the Cauchy problem for a generalized Camassa-Holm equation in a critical Besov space. First, by using the Littlewood-Paley decomposition, transport equations theory, logarithmic interpolation inequalities and Osgood's lemma, we establish the local well-posedness for the Cauchy problem of the equation in the critical Besov space B-2,1(2)1/. Next we derive a new blow-up criterion for strong solutions to the equation. Then we give a global existence result for strong solutions to the equation. Finally, we present two new blow-up results and the exact blow-up rate for strong solutions to the equation by making use of the conservation law and the obtained blow-up criterion.
引用
收藏
页码:801 / 829
页数:29
相关论文
共 53 条
[1]  
Bahouri H, 2011, GRUNDLEHREN DER MATH
[2]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[3]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
CAMASSA R, 1994, ADV APPL MECH, V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[6]   On the well-posedness of the Degasperis-Procesi equation [J].
Coclite, GM ;
Karlsen, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :60-91
[7]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[8]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[9]  
2-5
[10]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243