An efficient machine learning approach to establish structure-property linkages

被引:72
作者
Jung, Jaimyun [1 ]
Yoon, Jae Ik [1 ]
Park, Hyung Keun [1 ]
Kim, Jin You [2 ]
Kim, Hyoung Seop [1 ,3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[2] POSCO, Pohang Res Lab, Steel Prod Res Grp 1, Pohang 790785, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Ctr High Entropy Alloys, Pohang 37673, South Korea
关键词
Microstructure; Machine learning; Gaussian process regression; Optimization; CRYSTAL PLASTICITY; OPTIMIZATION; DEFORMATION; MODELS; MICROSTRUCTURES; CLASSIFICATION; COMPOSITES; ALGORITHM; STRENGTH; SURFACE;
D O I
10.1016/j.commatsci.2018.09.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Full-field simulations with synthetic microstructure offer unique opportunities in predicting and understanding the linkage between microstructural variables and properties of a material prior to or in conjunction with experimental efforts. Nevertheless, the computational cost restrains the application of full-field simulations in optimizing materials microstructures or in establishing comprehensive structure-property linkages. To address this issue, we propose the use of machine learning technique, namely Gaussian process regression, with a small number of full-field simulation results to construct structure-property linkages that are accurate over a wide range of microstructures. Furthermore, we demonstrate that with the implementation of expected improvement algorithm, microstructures that exhibit most desirable properties can be identified using even smaller number of full-field simulations.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 46 条
[1]   Modeling the mechanical behavior of heterogeneous ultrafine grained polycrystalline and nanocrystalline FCC metals [J].
Abdul-Latif, A. ;
Kerkour-El Miad, A. ;
Baleh, R. ;
Garmestani, H. .
MECHANICS OF MATERIALS, 2018, 126 :1-12
[2]   Geostatistical classification for remote sensing: an introduction [J].
Atkinson, PM ;
Lewis, P .
COMPUTERS & GEOSCIENCES, 2000, 26 (04) :361-371
[3]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]   Modeling and simulation techniques for polymer nanoparticle composites - A review [J].
Bernardo, Luis F. A. ;
Amaro, Ana P. B. M. ;
Pinto, Deesy G. ;
Lopes, Sergio M. R. .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 118 :32-46
[5]   A review of microarray datasets and applied feature selection methods [J].
Bolon-Canedo, V. ;
Sanchez-Marono, N. ;
Alonso-Betanzos, A. ;
Benitez, J. M. ;
Herrera, F. .
INFORMATION SCIENCES, 2014, 282 :111-135
[6]   SOLID MIXTURE PERMITTIVITIES [J].
BROWN, WF .
JOURNAL OF CHEMICAL PHYSICS, 1955, 23 (08) :1514-1517
[7]   A survey on feature selection methods [J].
Chandrashekar, Girish ;
Sahin, Ferat .
COMPUTERS & ELECTRICAL ENGINEERING, 2014, 40 (01) :16-28
[8]   Quantification and classification of microstructures in ternary eutectic alloys using 2-point spatial correlations and principal component analyses [J].
Choudhury, Abhik ;
Yabansu, Yuksel C. ;
Kalidindi, Surya R. ;
Dennstedt, Anne .
ACTA MATERIALIA, 2016, 110 :131-141
[9]   Image driven machine learning methods for microstructure recognition [J].
Chowdhury, Aritra ;
Kautz, Elizabeth ;
Yener, Bulent ;
Lewis, Daniel .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 123 :176-187
[10]   A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem [J].
Chugh, Tinkle ;
Chakraborti, Nirupam ;
Sindhya, Karthik ;
Jin, Yaochu .
MATERIALS AND MANUFACTURING PROCESSES, 2017, 32 (10) :1172-1178