Generalized lattice Boltzmann method with multirange pseudopotential

被引:413
作者
Sbragaglia, M.
Benzi, R.
Biferale, L.
Succi, S.
Sugiyama, K.
Toschi, F.
机构
[1] Univ Twente, Dept Appl Phys, NL-7500 AE Enschede, Netherlands
[2] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, I-00133 Rome, Italy
[4] CNR, Ist Applicaz Calcolo, I-00161 Rome, Italy
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 02期
关键词
D O I
10.1103/PhysRevE.75.026702
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The physical behavior of a class of mesoscopic models for multiphase flows is analyzed in details near interfaces. In particular, an extended pseudopotential method is developed, which permits to tune the equation of state and surface tension independently of each other. The spurious velocity contributions of this extended model are shown to vanish in the limit of high grid refinement and/or high order isotropy. Higher order schemes to implement self-consistent forcings are rigorously computed for 2d and 3d models. The extended scenario developed in this work clarifies the theoretical foundations of the Shan-Chen methodology for the lattice Boltzmann method and enhances its applicability and flexibility to the simulation of multiphase flows to density ratios up to O(100).
引用
收藏
页数:13
相关论文
共 42 条
[1]   Bouncing or sticky droplets:: Impalement transitions on superhydrophobic micropatterned surfaces [J].
Bartolo, D ;
Bouamrirene, F ;
Verneuil, É ;
Buguin, A ;
Silberzan, P ;
Moulinet, S .
EUROPHYSICS LETTERS, 2006, 74 (02) :299-305
[2]   Mesoscopic two-phase model for describing apparent slip in micro-channel flows [J].
Benzi, R ;
Biferale, L ;
Sbragaglia, M ;
Succi, S ;
Toschi, F .
EUROPHYSICS LETTERS, 2006, 74 (04) :651-657
[3]   Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle [J].
Benzi, R. ;
Biferale, L. ;
Sbragaglia, M. ;
Succi, S. ;
Toschi, F. .
PHYSICAL REVIEW E, 2006, 74 (02)
[4]   Mesoscopic modelling of heterogeneous boundary conditions for microchannel flows [J].
Benzi, R ;
Biferale, L ;
Sbragaglia, M ;
Succi, S ;
Toschi, F .
JOURNAL OF FLUID MECHANICS, 2006, 548 :257-280
[5]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[6]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[7]   Lattice Boltzmann simulations of contact line motion. II. Binary fluids [J].
Briant, AJ ;
Yeomans, JM .
PHYSICAL REVIEW E, 2004, 69 (03) :9
[8]   Gravity in a lattice Boltzmann model [J].
Buick, JM ;
Greated, CA .
PHYSICAL REVIEW E, 2000, 61 (05) :5307-5320
[9]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[10]   Reduction of spurious velocity in finite difference lattice Boltzmann models for liquid-vapor systems [J].
Cristea, A ;
Sofonea, V .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (09) :1251-1266