Approximating the Mode of the Non-Central Chi-Squared Distribution

被引:0
作者
Ananiev, V [1 ]
Read, A. L. [1 ]
机构
[1] Univ Oslo, Dept Phys, Oslo, Norway
基金
欧盟地平线“2020”;
关键词
non-central chi-squared; mode; linear approximation; Boost C++; performance;
D O I
10.28924/2291-8639-20-2022-19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the probability density function (pdf) of the non-central chi(2) distribution with arbitrary number of degrees of freedom and non-centrality. For this function we find the approximate location of the maximum and discuss related edge cases of 1 and 2 degrees of freedom. We also use this expression to demonstrate the improved performance of the C++ Boost's implementation of the non-central chi(2) and extend the domain of its applicability.
引用
收藏
页数:7
相关论文
共 8 条
[1]   Properties of the probability density function of the non-central chi-squared distribution [J].
Andras, Szilard ;
Baricz, Arpad .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (02) :395-402
[2]  
[Anonymous], 2021, Boost C++ libraries
[3]   On the Convergence of the Chi Square and Noncentral Chi Square Distributions to the Normal Distribution [J].
Horgan, Donagh ;
Murphy, Colin C. .
IEEE COMMUNICATIONS LETTERS, 2013, 17 (12) :2233-2236
[4]  
Olver F.W.J., 2021, NIST Digital Library of Mathematical Functions
[5]   ITERATED DEFERRED CORRECTIONS FOR NONLINEAR OPERATOR EQUATIONS [J].
PEREYRA, V .
NUMERISCHE MATHEMATIK, 1967, 10 (04) :316-&
[6]  
Saulis L., 2001, NONLINEAR ANAL-MODEL, V6, P87, DOI [DOI 10.15388/NA.2001.6.1.15218, 10.15388/na.2001.6.1.15218]
[7]  
Sawant S.S., 2021, ARXIV PHYS FLU DYN
[8]  
William H.Press William T. Vetterling Brian P. Flannery., 2007, Numerical Recipes, V3rd