Fermionic multiscale entanglement renormalization ansatz

被引:122
作者
Corboz, Philippe [1 ]
Vidal, Guifre [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 16期
基金
澳大利亚研究理事会;
关键词
D O I
10.1103/PhysRevB.80.165129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In a recent contribution [P. Corboz, G. Evenbly, F. Verstraete, and G. Vidal, arXiv: 0904.4151 (unpublished)] entanglement renormalization was generalized to fermionic lattice systems in two spatial dimensions. Entanglement renormalization is a real-space coarse-graining transformation for lattice systems that produces a variational ansatz, the multiscale entanglement renormalization ansatz (MERA), for the ground states of local Hamiltonians. In this paper we describe in detail the fermionic version of the MERA formalism and algorithm. Starting from the bosonic MERA, which can be regarded both as a quantum circuit or in relation to a coarse-graining transformation, we indicate how the scheme needs to be modified to simulate fermions. To confirm the validity of the approach, we present benchmark results for free and interacting fermions on a square lattice with sizes between 6 x 6 and 162 x 162 and with periodic boundary conditions. The present formulation of the approach applies to generic tensor network algorithms.
引用
收藏
页数:12
相关论文
共 42 条
  • [1] AGUADO M, UNPUB, P84001
  • [2] Entanglement renormalization and topological order
    Aguado, Miguel
    Vidal, Guifre
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (07)
  • [3] ALI N, COMMUNICATION, P50401
  • [4] Entanglement scaling in critical two-dimensional fermionic and bosonic systems
    Barthel, T.
    Chung, M. -C.
    Schollwoeck, U.
    [J]. PHYSICAL REVIEW A, 2006, 74 (02):
  • [5] BARTHEL T, ARXIV09073689
  • [6] Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model
    Cincio, Lukasz
    Dziarmaga, Jacek
    Rams, Marek M.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (24)
  • [7] CORBOZ P, ARXIV09044151
  • [8] CORBOZ P, UNPUB
  • [9] Gaussian quantum Monte Carlo methods for fermions and bosons
    Corney, JF
    Drummond, PD
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (26)
  • [10] Entanglement Renormalization in Two Spatial Dimensions
    Evenbly, G.
    Vidal, G.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (18)