Local convergence of Newton's method on the Heisenberg group

被引:2
|
作者
Dali, Bechir [1 ]
Li, Chong [2 ]
Wang, Jinhua [3 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ Technol, Dept Math, Hangzhou 310032, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Newton's method; Heisenberg group; Lipschitz condition; RIEMANNIAN-MANIFOLDS; VECTOR-FIELDS; UNIQUENESS; ZEROS;
D O I
10.1016/j.cam.2015.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study Newton's method on the Heisenberg group for solving the equation f (x) = 0, where f is a mapping from Heisenberg group to its Lie algebra. Under certain generalized Lipschitz condition, we obtain the convergence radius of Newton's method and the estimation of the uniqueness ball of the zero point off. Some applications to special cases including Kantorovich's condition and gamma-condition are provided. The determination of an approximate zero point of an analytic mapping is also presented. Concrete examples are given to illustrate applications of our results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:217 / 232
页数:16
相关论文
共 50 条
  • [1] A Convergence Criterion of Newton’s Method Based on the Heisenberg Uncertainty Principle
    Kouhkani S.
    Koppelaar H.
    Taghipour Birgani O.
    Argyros I.K.
    Radenović S.
    International Journal of Applied and Computational Mathematics, 2022, 8 (1)
  • [2] On the local convergence of Newton's method to a multiple root
    Yamagishi, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (04) : 897 - 908
  • [3] LOCAL CONVERGENCE OF NEWTON'S METHOD FOR PERTURBED GENERALIZED EQUATIONS
    Argyros, Ioannis K.
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2006, 13 (04): : 261 - 267
  • [4] Local convergence of Newton's method for subanalytic variational inclusions
    Cabuzel, Catherine
    Pietrus, Alain
    POSITIVITY, 2008, 12 (03) : 525 - 533
  • [5] Local convergence of Newton's method in the classical calculus of variations
    Gockenbach, Mark
    Liu, Chang
    OPTIMIZATION, 2015, 64 (04) : 957 - 980
  • [6] Local convergence of Newton's method under majorant condition
    Ferreira, O. P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) : 1515 - 1522
  • [7] Local convergence of Newton’s method for subanalytic variational inclusions
    Catherine Cabuzel
    Alain Pietrus
    Positivity, 2008, 12 : 525 - 533
  • [8] Extending the applicability of the local and semilocal convergence of Newton's method
    Argyros, Ioannis K.
    Alberto Magrenan, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 349 - 355
  • [9] Unifying semilocal and local convergence of Newton's method on Banach space with a convergence structure
    Argyros, Ioannis K.
    Behl, Ramandeep
    Motsa, S. S.
    APPLIED NUMERICAL MATHEMATICS, 2017, 115 : 225 - 234
  • [10] Local Convergence of Newton's Method on Lie Groups and Uniqueness Balls
    He, Jinsu
    Wang, Jinhua
    Yao, Jen-Chih
    ABSTRACT AND APPLIED ANALYSIS, 2013,