New special Einstein pseudo-Riemannian metrics on solvable Lie algebras

被引:0
作者
Rossi, Federico A. [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
来源
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA | 2022年 / 13卷 / 02期
关键词
Einstein metrics; nilsolitons; solvable Lie algebras; pseudo-Riemannian homogeneous metrics; complex structures; para-complex; structures; LEFT INVARIANT METRICS; KAHLER METRICS; RICCI-FLAT; SOLVMANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit a concrete procedure to construct Einstein pseudo-Kahler and para-Kahler metrics on solvable Lie algebras. We apply this method to classify all the rank-one pseudo-Iwasawa extensions of type-(Nil4) nilsoliton in low dimension. We prove that such metrics exist on the rank-one pseudo-Iwasawa extension of the generalized Heisenberg Lie algebra. Further ideas and suggestions to produce more special Einstein pseudoRiemannian metrics arc exposed.
引用
收藏
页码:449 / 479
页数:31
相关论文
共 43 条
[1]  
[Алексеевский Дмитрий Владимирович Alekseevsky Dmitrii Vladimirovich], 2009, [Успехи математических наук, Russian Mathematical Surveys, Uspekhi matematicheskikh nauk], V64, P3, DOI 10.4213/rm9262
[2]   Flat pseudo-Riemannian Lie groups [J].
Aubert, A ;
Medina, A .
TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (04) :487-506
[3]   Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups [J].
Batat, W. ;
Onda, K. .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 :138-152
[4]   On para-Kahler and hyper-para-Kahler Lie algebras [J].
Benayadi, Said ;
Boucetta, Mohamed .
JOURNAL OF ALGEBRA, 2015, 436 :61-101
[5]   NON-COMPACT EINSTEIN MANIFOLDS WITH SYMMETRY [J].
Boehm, Christoph ;
Lafuente, Ramiro A. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 36 (03) :591-651
[6]  
Conti D., TOHOKU MATH J
[7]  
Conti DIEGO, 2023, J KOREAN MATH SOC, V60, P115
[8]   Nice pseudo-Riemannian nilsolitons [J].
Conti, Diego ;
Rossi, Federico A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 173
[9]   Indefinite Nilsolitons and Einstein Solvmanifolds [J].
Conti, Diego ;
Rossi, Federico A. .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
[10]   Indefinite Einstein metrics on nice Lie groups [J].
Conti, Diego ;
Rossi, Federico A. .
FORUM MATHEMATICUM, 2020, 32 (06) :1599-1619